近地空间环境的GNSS无线电掩星探测技术

乐新安, 郭英华, 曾桢, 万卫星. 近地空间环境的GNSS无线电掩星探测技术[J]. 地球物理学报, 2016, 59(4): 1161-1188, doi: 10.6038/cjg20160401
引用本文: 乐新安, 郭英华, 曾桢, 万卫星. 近地空间环境的GNSS无线电掩星探测技术[J]. 地球物理学报, 2016, 59(4): 1161-1188, doi: 10.6038/cjg20160401
YUE Xin-An, GUO Ying-Hua, ZENG Zhen, WAN Wei-Xing. GNSS radio occultation technique for near-Earth space environment detection[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(4): 1161-1188, doi: 10.6038/cjg20160401
Citation: YUE Xin-An, GUO Ying-Hua, ZENG Zhen, WAN Wei-Xing. GNSS radio occultation technique for near-Earth space environment detection[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(4): 1161-1188, doi: 10.6038/cjg20160401

近地空间环境的GNSS无线电掩星探测技术

详细信息
    作者简介:

    乐新安,男,1981年生,研究员,现主要从事GPS/无线电掩星技术、电离层及空间天气、数据同化等研究.E-mail:yuexinan@mail.iggcas.ac.cn

  • 中图分类号: P353;P423

GNSS radio occultation technique for near-Earth space environment detection

  • 从GPS/MET计划开始,基于GNSS的无线电掩星技术已成为一种强大的近地空间环境探测手段.截至到目前,已经有20多颗发射的低轨道卫星带GPS掩星接收机,其中COSMIC是首个专门用于掩星探测的卫星星座.这些掩星数据被广泛应用于气象预报、气候与全球变化研究、及空间天气监测和电离层研究.由于COSMIC的成功,相关合作单位目前正积极推动COSMIC-2计划,该计划将总共有12颗卫星,于2016年与2019 年各发射6颗.COSMIC-2将携带一个高级的GNSS掩星接收机,它将接受GPS与GLONASS信号,并具备接受其他可获得信号源的能力(如中国北斗定位信号),其每日观测的掩星数量将是COSMIC的4~6倍.同时COSMIC-2还将携带两个空间天气载荷,加强空间天气的监测能力.本文以COSMIC与COSMIC-2计划为主线,对掩星的发展历史、技术要点进行了简单介绍,并简要综述了COSMIC取得的部分科学成果,同时对未来包括技术发展和众多的掩星观测进行了展望.
  • 加载中
  • [1]

    Alexander S P, Tsuda T, Kawatani Y, et al. 2008. Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res., 113: D24115, doi: 10.1029/2008JD010039.

    [2]

    Anthes R A, Rocken C, Kuo Y H. 2000.Applications of COSMIC to meteorology and climate.Terr. Atmos. Ocean. Sci., 11(1):115-156.

    [3]

    Anthes R A, Ector D, Hunt D C, et al. 2008. The COSMIC/FORMOSAT-3 Mission: Early results. Bull. Amer. Meteor. Soc., 89(3):313-333.

    [4]

    Anthes R A. 2011. Exploring Earth's atmosphere with radio occultation: Contributions to weather, climate and space weather.Atmos. Meas. Tech.,4:1077-1103, doi:10.5194/amt-4-1077-2011.

    [5]

    Ao C O, Waliser D E, Chan S K, et al. 2012. Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res.,117: D16117, doi: 10.1029/2012JD017598.

    [6]

    Ao C O, Hajj A J. 2013. Monitoring the width of the tropical belt with GPS radio occultationmeasurements. Geophys. Res. Lett.,40(23) 6236-6241, doi: 10.1002/2013GL058203.

    [7]

    Arras C, Wickert J, Beyerle G, et al. 2008. A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys. Res. Lett., 35: L14809, doi:10.1029/2008GL034158.

    [8]

    Bai W H, Sun Y Q, Du Q F, et al. 2014. An introduction to the FY3 GNOS instrument and mountain-top tests. Atmos. Meas. Tech., 7: 1817-1823, doi:10.5194/amt-7-1817-2014.

    [9]

    Bernath P F, McElroy C T, Abrams M C, et al. 2005. Atmospheric Chemistry Experiment (ACE): Mission overview. Geophys. Res. Lett., 32: L15S01, doi:10.1029/2005GL022386.

    [10]

    Beyerle G, Schmidt T, Michalak G, et al. 2005. GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique. Geophys. Res. Lett., 32 : L13806, doi:10.1029/2005GL023109.

    [11]

    Bi Y M, Yang Z D, Zhang P, et al. 2012.An introduction to China FY3 radio occultation mission and its measurement simulation.Adv. Space Res., 49(7): 1191-1197, doi:10.1016/j.asr.2012.01.014.

    [12]

    Biondi R, Randel W J, Ho S P, et al. 2012. Thermal structure of intense convective clouds derived from GPS radio occultations. Atmos. Chem. Phys.,12: 5309-5318, doi: 10.5194/acp-12-5309-2012.

    [13]

    Biondi R, Ho S P, Randel W, et al. 2013. Tropical cyclone cloud-top height and vertical temperature structure detection using GPS radio occultation measurements. J. Geophys. Res.,118(11): 5247-5259, doi: 10.1002/jgrd.50448.

    [14]

    Bonnedal M, Christensen J, Carlström A, et al. 2010. Metop-GRAS in-Orbit Instrument Performance.GPS Solutions, 14(1): 109-120.

    [15]

    Burns A G, Zeng Z, Wang W, et al. 2008. Behavior of the F2 peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data.J. Geophys. Res., 113: A12305, doi:10.1029/2008JA013308.

    [16]

    Burns A G, Wang W, Qian L, et al. 2014. On the solar cycle variation of the winter anomaly.J. Geophys. Res., 119(6): 4938-4949, doi:10.1002/2013JA019552.

    [17]

    Cardellach E, Rius A, Cerezo F, et al. 2010. Polarimetric GNSS Radio-Occultations for heavy rain detection. 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Honolulu, HI: IEEE, 3841-3844, doi: 10.1109/IGARSS.2010.5650907.

    [18]

    Cardinali C, Healy S. 2014. Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics.Quart. J. Roy. Meteor. Soc., 140(684): 2315-2320,doi:10.1002/qj.2300.

    [19]

    Carter B A, Zhang K, Norman R, et al. 2013.On the occurrence of the equatorial F-region irregularities during solar minimum using radio occultation measurements.J. Geophys. Res., 118(2): 892-904, doi:10.1002/jgra.50089.

    [20]

    Choi M S, Lee W K, Cho S K, et al. 2010. Operation of the Radio Occultation Mission in KOMPSAT-5.J. Astron. Space Sci., 27(4): 345-352.

    [21]

    Colomb F R, Alonso C, Hofmann C, et al. 2004.SAC-C mission, an example of international cooperation.Adv. Space Res., 34(10): 2194-2199.

    [22]

    Cook K, Wilczynski P, Wenkel M. 2014.The Future of GNSS-RO for Global Weather Monitoring and Prediction—A COSMIC-2 / FORMOSAT-7 Program Status Update.presented at the 8th FORMOSAT-3/COSMIC data users' workshop. Boulder, CO, USA.

    [23]

    Curiel A da S, Lambert M, Liddle D, et al. 2013.Introduction to FORMOSAT-7/COSMIC-2 Mission.Proceedings of the 27th AIAA/USU Conference on Small Satellites. Logan, Utah, USA.

    [24]

    Danzer J, Scherllin-Pirscher B, Foelsche U. 2013. Systematic residual ionospheric errors in radio occultation data and a potential way to minimize them.Atmos. Meas. Tech., 6: 2169-2179, doi:10.5194/amt-6-2169-2013.

    [25]

    Davis N A, Birner T. 2013.Seasonal to multidecadal variability of the width of the tropical belt.J. Geophys. Res.,118(14): 7773-7787, doi: 10.1002/jgrd.50610.

    [26]

    De La Beaujardière O. 2004. C/NOFS: a mission to forecast scintillations. J. Atmos. Sol.-Terr. Phys., 66(17): 1573-1591.

    [27]

    Feltz M L, Knuteson R O, Ackerman S, et al. 2014. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders. Atmos. Meas. Tech.,7: 3751-3762, doi: 10.5194/amt-7-3751-2014.

    [28]

    Fishbach F F. 1965. A satellite method for temperature and pressure below 24 km. Bull. Amer. Meteor. Soc., 9: 528-532.

    [29]

    Fjeldbo G, Eshleman V R. 1968. The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data. Planet. Space Sci., 16(8): 1035-1059.

    [30]

    Flechtner F, Watkins M, Morton P, et al. 2012. Status of the GRACE Follow-on Mission.Joint GSTM (GRACE Science Team Meeting)/SPP Final Colloquium. GFZ, Potsdam, Germany.

    [31]

    Fong C J, Chu V, Yen N L, et al. 2012. FormoSat-7/COSMIC-2 GNSS Radio Occultation Mission: From Research to Operations. Presented at the International Radio Occultation Working Group (IROWG) 2nd Workshop. Estes Park, CO, USA.

    [32]

    Gorbunov M E, Gurvich A S. 1998. Microlab-1 Experiment: Multipath effects in the lower troposphere. J. Geophys. Res., 103(D12): 13819-13826.

    [33]

    Gorbunov M E, Lauritsen K B, Benzon H H, et al. 2011. Processing of GRAS/METOP radio occultation data recorded in closed-loop and raw-sampling modes. Atmos. Meas. Tech., 4: 1021-1026, doi:10.5194/amt-4-1021-2011.

    [34]

    Gulbis A A S, Elliot J L, Person M J, et al. 2006. Charon's radius and atmospheric constraints from observations of a stellar occultation.Nature, 439(7072): 48-51.

    [35]

    Guo P, Kuo Y H, Sokolovskiy S V, et al. 2011. Estimating atmospheric boundary layer depth using COSMIC radio occultation data.J. Atmos. Sci., 68(8): 1703-1713, doi: 10.1175/2011JAS3612.1.

    [36]

    Guo P, Wu M J, Xu T L, et al. 2015. An Abel inversion method assisted by background model for GPS Ionospheric Radio Occultation data. J. Atmos. Sol.-Terr. Phys., 123(17): 71-81, doi:10.1016/j.jastp.2014.12.008.

    [37]

    Hajj G A, Romans L J. 1998. Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment. Radio Sci., 33(1): 175-190.

    [38]

    Hauschild A, Markgraf M, Montenbruck O. 2014. GPS Receiver Performance On Board a LEO Satellite. Inside GNSS Journal, 48-57.

    [39]

    He M S, Liu L B, Wan W X, et al. 2009a. A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC.J. Geophys. Res., 114: A12309, doi:10.1029/2009JA014175.

    [40]

    He W Y, Ho S P, Chen H B, et al. 2009b. Assessment of radiosonde temperaturemeasurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophys. Res. Lett.,36: L17807, doi: 10.1029/2009GL038712.

    [41]

    Ho S P, Goldberg M, Kuo Y H, et al. 2009. Calibration of temperature in the lower stratosphere from microwavemeasurements using COSMIC radio occultation data: Preliminary results. Terr. Atmos. Oceanic Sci.,20(1): 87-100, doi: 10.3319/TAO.2007.12.06.01(F3C).

    [42]

    Ho S P, Hunt D, Steiner A K, et al. 2012. Reproducibility of GPS radio occultation data for climate monitoring: Profile-to-profile inter-comparison of CHAMP climate records 2002 to 2008 from six data centers. J. Geophys. Res.,117: D18111, doi: 10.1029/2012JD017665.

    [43]

    Ho S P, Peng L, Anthes R A, et al. 2015. Marine boundary layer heights and their longitudinal, diurnal, and inter-seasonal variability in the Southeastern Pacific using COSMIC, CALIOP, and radiosonde data.J. Climate, 28(7): 2856-2872.

    [44]

    Hocke K, Pavelyev A G, Yakovlev O I, et al. 1999.Radio occultation data analysis by the radio holographic method.J. Atmos. Sol.-Terr. Phys., 61(15): 1169-1177.

    [45]

    Jin S G, Cardellach E, Xie F Q. 2014. GNSS Remote Sensing: Theory, Methods and Applications. Netherlands: Springer.

    [46]

    Khaykin S M, Pommereau J P, Hauchecorne A. 2013. Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultations. Atmos. Chem. Phys., 13: 6391-6402, doi:10.5194/acp-13-6391-2013.

    [47]

    Kim J, Son S W. 2012. Tropical cold-point tropopause: Climatology, seasonal cycle, and intraseasonal variability derived from COSMIC GPS radio occultation measurements. J. Climate,25: 5343-5360, doi: 10.1175/JCLI-D-11-00554.1.

    [48]

    Kliore A J, Hamilton T W, Cain D L. 1964.Determination of some physical properties of the atmosphere of Mars from changes in the Doppler signal of a spacecraft on an earth occultation trajectory.Technical Report 32-674, JPL, Pasadena, CA.

    [49]

    Komjathy A, Wilson B, Pi X Q, et al. 2010. JPL/USC GAIM: On the impact of using COSMIC and ground-based GPS measurements to estimate ionospheric parameters. J. Geophys. Res., 115: A02307, doi:10.1029/2009JA014420.

    [50]

    Kuo Y H, Zou X, Huang W. 1998a. The impact of global positioning system data on the prediction of an extratropical cyclone: an observing system simulation experiment. Dyn. Atmos. Oceans, 27(1-4): 439-470.

    [51]

    KuoY H, Zou X, Chen S J, et al. 1998b. A GPS/MET sounding through an intense upper-level front.Bull. Amer. Meteor. Soc., 79(4): 617-626.

    [52]

    Kuo Y H, Wee T K, Sokolovskiy S, et al. 2004. Inversion and error estimation of GPS radio occultation data. J. Met. Soc. Japan, 82: 507-531.

    [53]

    Kuo Y H, Schreiner W S, Wang J, et al. 2005. Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett.,32(5): L05817, doi: 10.1029/2004GL021443.

    [54]

    Kursinski E R, Hajj G A, Schofield J T, et al. 1997. Observing Earth's atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res., 102: 23429-23465.

    [55]

    Larsen G B, Syndergaard S, Høeg P, et al. 2005.Single frequency processing of Ørsted GPS radio occultation measurements.GPS Solut., 9(2): 144-155.

    [56]

    Lei J H, Yue X, Schreiner W S. 2010. Comment on "A new aspect of ionospheric E region electron density morphology" by Yen-Hsyang Chu, Kong-Hong Wu, and Ching-Lun Su. J. Geophys. Res., 115: A07313, doi:10.1029/2009JA015234.

    [57]

    Lin C H, Hsiao C C, Liu J Y, et al. 2007. Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure. J. Geophys. Res., 112: A12305, doi:10.1029/2007JA012455.

    [58]

    Liu L B, Zhao B Q, Wan W X, et al. 2009. Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate mission radio occultation measurements. J. Geophys. Res., 114: A02302, doi:10.1029/2008JA013819.

    [59]

    Liu L B, He M S, Yue X A, et al. 2010.Ionosphere around equinoxes during low solar activity.J. Geophys. Res., 115: A09307, doi:10.1029/2010JA015318.

    [60]

    Liu L B, Le H J, Chen Y D, et al. 2011. Features of the middle- and low-latitude ionosphere during solar minimum as revealed from COSMIC radio occultation measurements. J. Geophys. Res., 116: A09307, doi:10.1029/2011JA016691.

    [61]

    Luan X L, Wang W B, Burns A, et al. 2008. Midlatitude nighttime enhancement in F region electron density from global COSMIC measurements under solar minimum winter condition.J. Geophys. Res., 113: A09319, doi:10.1029/2008JA013063.

    [62]

    Mannucci A J, Ao C O, Pi X, et al. 2011. The impact of large scale ionospheric structure on radio occultation retrievals. Atmos. Meas. Tech., 4: 2837-2850, doi:10.5194/amt-4-2837-2011.

    [63]

    Marradi L, Zin A, Zago S, et al. 2012. The ROSA Project for Radio-Occultation: Findings and Current Status. Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation. Nashville, TN, 1990-1997.

    [64]

    Mears C, Wang J, Ho S P, et al. 2012. Hydrological cycle: Total column water vapor. Bull. Amer. Meteor. Soc., 93: S25-S26.

    [65]

    Meehan T K, Ao C, Ijima B, et al. 2008.A demonstration of L2C tracking from space for atmospheric occultation.Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008). Savannah, GA, 698-701.

    [66]

    Meehan T K, Esterhuizen F, Franklin G, et al. 2012.Development Status of NASA's TriG GNSS Science Instrument.presented at the International Radio Occultation Working Group (IROWG) 2nd Workshop. Estes Park, CO, USA.

    [67]

    Melbourne W G,Davis E S, Duncan C B, et al. 1994. The Application of Spaceborne GPS to Atmospheric Limb Sounding and Global Change Monitoring.JPL Publication 94-18, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 147 pp.

    [68]

    Mostert S, Koekemoer J A. 1997. The science and engineering payloads and experiments on sunsat. Acta Astronautica. 41(4-10): 401-411.

    [69]

    Munchak L A, Pan L L. 2014.Separation of the lapse rate and the cold point tropopauses in the tropics and the resulting impact on cloud top-tropopause relationships.J. Geophys. Res.,119(13): 7963-7978, doi: 10.1002/2013JD021189.

    [70]

    Norman R J, Dyson P L, Yizengaw E, et al. 2012.Radio Occultation Measurements From the Australian Microsatellite FedSat.IEEE Trans. Geo. Remote Sens., 50(11): 4832-4839, 10.1109/TGRS.2012.2194295.

    [71]

    Pan C J, Das U, Yang S S, et al. 2011. Investigation of Kelvin waves in the stratosphere using FORMOSAT-3/COSMIC temperature data. J. Meteor. Soc. Japan,89A: 83-96.

    [72]

    Pedatella N M, Lei J, Larson K M, et al. 2009. Observations of the ionospheric response to the 15 December 2006 geomagnetic storm: Long-duration positive storm effect. J. Geophys. Res., 114: A12313, doi:10.1029/2009JA014568.

    [73]

    Perona G, Notarpietro R, Gabella M. 2007. GPS radio occultation on-board the OCEANSAT-2 mission: An Indian (ISRO)-Italian (ASI) collaboration. Indian Journal of Radio Space Physics, 36(5): 386-393.

    [74]

    Petrovski I G. 2014. GPS, GLONASS, Galileo, and BeiDou for Mobile Devices. Cambridge: Cambridge University Press.

    [75]

    Randel W J, Wu F. 2015. Variability of zonal mean tropical temperatures derived from a decade of GPS radio occultation data. J. Atmos. Sci.,72(3): 1261-1275.

    [76]

    Rius A, Ruffini G, Cucurull L. 1997. Improving the vertical resolution of ionospheric tomography with GPS occultations. Geophys. Res. Lett.,24(18): 2291-2294.

    [77]

    Rocken C, Anthes R, Exner M, et al. 1997. Analysis and validation of GPS/MET Data in the Neutral Atmosphere. J. Geophys. Res., 102(D25): 29849-29866.

    [78]

    Rocken C, Kuo Y H, Schreiner W, et al. 2000. COSMIC system description.Terr. Atmos. Oceanic Sci., 11(1): 21-52.

    [79]

    Rothacher M, Tapley B D, Reigber C, et al. 2007. The tracking, occultation and ranging (TOR) instrument onboard TerraSAR-X and on TanDEM-X. Proc. IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE, 4983-4986.

    [80]

    Scherllin-Pirscher B, Forlsche U, Borsche M, et al. 2010.Analysis of migratingdiurnal tides detected in FORMOSAT-3/COSMIC temperature data.J. Geophys. Res.,115: D14108, doi: 10.1029/2009JD013008.

    [81]

    Scherllin-Pirscher B, Deser C, Ho S P, et al. 2012.The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements.Geophys. Res. Lett.,39: L20801, doi: 10.1029/2012GL053071.

    [82]

    Scherllin-Pirscher B, Steiner A K, Kirchengast G. 2014. Deriving dynamics from GPS radio occultation: Three-dimensional wind fields for monitoring the climate. Geophys. Res. Lett.,41: 7367-7374, doi: 10.1002/2014GL061524.

    [83]

    Schlüssel P. 2012.EUMETSAT Polar System - Second Generation.ITSC-18 (International TOVS Study Conferences), Toulouse, France.

    [84]

    Schreiner W, Rocken C, Sokolovskiy S, et al. 2007. Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys. Res. Lett., 34: L04808, doi:10.1029/2006GL027557.

    [85]

    Schreiner W, Rocken C, Sokolovskiy S, et al. 2010. Quality Assessment of COSMIC/FORMOSAT-3 GPS Radio Occultation Data Derived from Single- and Double-Difference Atmospheric Excess Phase Processing. GPS Solut., 14(1): 13-22, doi:10.1007/s10291-009-0132-5.

    [86]

    Schreiner W S, Sokolovskiy S V, Rocken C, et al. 1999. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci., 34(4): 949-966, doi:10.1029/1999RS900034.

    [87]

    Schreiner W, Sokolovskiy S, Hunt D, et al. 2011. Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS missions at CDAAC. Atmos. Meas. Tech., 4(10): 2255-2272, doi:10.5194/amt-4-2255-2011.

    [88]

    Shen X H. 2014. The experimental satellite on electromagnetism monitoring.Chin. J. Space Sci., 34(5): 558-562, doi:10.11728/cjss2014.05.558.

    [89]

    Sheng C, Deng Y, Yue X A, et al. 2014. Height-integrated Pedersen conductivity in both E and F regions from COSMIC observations.J. Atmos. Sol.-Terr. Phys., 115-116: 79-86, doi:10.1016/j.jastp.2013.12.013.

    [90]

    Sokolovskiy S V. 2000. Inversions of radio occultation amplitude data. Radio Sci., 35(1): 95-107.

    [91]

    Sokolovskiy S V, Kuo Y H, Rocken C, et al. 2006. Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode. Geophys. Res. Lett.,33: L12813, doi: 10.1029/2006GL025955.

    [92]

    Sokolovskiy S, Rocken C, Schreiner W, et al. 2009. Postprocessing of L1 GPS radio occultation signals recorded in open-loop mode. Radio Sci., 44: RS2002, doi:10.1029/2008RS003907.

    [93]

    Sokolovskiy S V, Rocken C, Schreiner W S, et al. 2010.On the uncertainty of radio occultation inversions in the lower troposphere.J. Geophy. Res.,115: D22111, doi: 10.1029/2010JD014058.

    [94]

    Sokolovskiy S, Schreiner W, Rocken C, et al. 2002. Detection of high-altitude ionospheric irregularities with GPS/MET.Geophys. Res. Lett., 29(3): 1-4, doi:10.1029/2001GL013398.

    [95]

    Sokolovskiy S V, Schreiner W S, Zeng Z, et al. 2014a. Use of the L2C signal for inversions of GPS radio occultation data in the neutral atmosphere. GPS Solutions,18 (3): 405-416, doi: 10.1007/s10291-013-0340-x.

    [96]

    Sokolovskiy S V, Schriener W S, Zeng Z, et al. 2014b. Observation, analysis and modeling of deep radio occultation signals: effects of tropospheric ducts and interfering signals. Radio Sci.,49: 954-970, doi: 10.1002/2014RS005436.

    [97]

    Son S W, Tandon N F, Polvani L M. 2011. The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements. J. Geophys. Res.,116: D20113, doi: 10.1029/2011JD016030.

    [98]

    Steiner A K, Kirchengast G, Ladreiter H P. 1999.Inversion, error analysis, and validation of GPS/MET occultation data.Ann. Geophys., 17: 122-138.

    [99]

    Steiner A K, Lackner B C, Ladstadter F, et al. 2011. GPS radio occultation for climate monitoring and change detection. Radio Sci.,46: RS0D24, doi: 10.1029/2010RS004614.

    [100]

    Straus P R, Betz D A. 2014. COSMIC-2: A Platform for Advanced Ionospheric Observations. Presented at the 2014 NOAA Space Weather Workshop, Boulder, CO, USA.

    [101]

    Syndergaard S. 1998. Modeling the impact of the Earth's oblateness on the retrieval of temperature and pressure profiles from limb sounding. J. Atmos. Sol.-Terr. Phys., 60(2): 171-180.

    [102]

    Syndergaard S. 2000. On the ionosphere calibration in GPS radio occultation measurements. Radio Sci., 35(3): 865-883.

    [103]

    Syndergaard S, Larsen G B. 2011. Ionosphere-free combinations with future generation Galileo signals. Proceeding of the 3rd international colloquium-scientific and fundamental aspects of the Galileo programme. Copenhagen, Denmark.

    [104]

    Vergados P, Luo Z J, Emanuel K, et al. 2014. Observational tests of hurricaneintensityestimations using GPS radio occultations. J. Geophys. Res.,119(4): 1936-1948, doi: 10.1002/2013JD020934.

    [105]

    Verkhoglyadova O P, Leroy S S, Ao C O. 2014a. Estimation of winds from GPS radio occultations.J. Atmos. Oceanic Technol.,31(11): 2451-2461, doi: 10.1175/JTECH-D-14-00061.1.

    [106]

    Verkhoglyadova O P, Mannucci A J, Ao C O, et al. 2014b. Effect of small scale ionospheric disturbances on RO data quality. Presented at the 8th FORMOSAT-3/COSMIC data users' workshop. Boulder, CO, USA.

    [107]

    von Engeln A, Marquardt C, Andres Y. 2014. Overview of EUMETSAT Radio Occultation Activities.Presented at the 8th FORMOSAT-3/COSMIC data users' workshop. Boulder, CO, USA.

    [108]

    Wang L, Alexander M J. 2010. Global estimates of gravity wave parameters from GPS radio occultation temperature data. J. Geophys. Res.,115: D21122, doi: 10.1029/2010JD013860.

    [109]

    Ware R, Rocken C, Solheim F, et al. 1996. GPS sounding of the atmosphere from low Earth orbit: Preliminary results. Bull. Amer. Met. Soc., 77(1): 19-40.

    [110]

    Wee T K, Kuo Y H, Lee D K, et al. 2012. Two overlooked biases of the Advanced Research WRF (ARW) model in geopotential height and temperature. Mon. Wea. Rev.,140(12): 3907-3918, doi: 10.1175/MWR-D-12-00045.1.

    [111]

    Wickert J, Reigber C, Beyerle G, et al. 2001. Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett., 28(17): 3263-3266.

    [112]

    Wielicki B A, Young D F, Mlynczak M G, et al. 2013. Achieving climate change absolute accuracy in orbit. Bull. Amer. Metor. Soc., 94(10): 1519-1539, doi: 10.1175/BAMS-D-12-00149.1.

    [113]

    Wong V, Emanuel K. 2007. Use of cloud radars and radiometers for tropical cyclone intensity estimation.Geophys. Res. Lett.,34: L12811, doi: 10.1029/2007GL029960.

    [114]

    Xiao C Y, Hu X. 2010. Analysis on the global morphology of stratospheric gravity wave activity deduced from the COSMIC GPS occultation profiles. GPS Solut.,14(1): 65-74, doi: 10.1007/s10291-009-0146-z.

    [115]

    Xie F, Wu D L, Ao C O, et al. 2010. Atmospheric diurnal variations observed with GPS radio occultation soundings. Atmos. Chem. Phys., 10(14): 6889-6899, doi: 10.5194/acp-10-6889-2010.

    [116]

    Xie F, Wu D L, Ao C O, et al. 2012. Advances and limitations of atmospheric boundary layer observantions with GPS occultation over southeast Pacific Ocean.Atmos. Chem. Phys., 12(2): 903-918, doi: 10.5194/acp-12-903-2012.

    [117]

    Yee T. 2004.Roadrunner, a high-performance responsive space mission. Proceedings of the AIAA/USU Conference on Small Satellites.Logan, UT, USA.

    [118]

    Yue X, Liu L B, Wan W X, et al. 2008. Modeling the effects of secular variation of geomagnetic field orientation on the ionospheric long term trend over the past century. J. Geophys. Res., 113: A10301, doi:10.1029/2007JA012995.

    [119]

    Yue X, Schreiner W S, Lei J, et al. 2010a. Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann. Geophys., 28(1): 217-222, doi:10.5194/angeo-28-217-2010.

    [120]

    Yue X, Schreiner W S, Lei J H, et al. 2010b. Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event. J. Geophys. Res., 115: A00G09, doi:10.1029/2010JA015466.

    [121]

    Yue X, Schreiner W S, Hunt D C, et al. 2011a. Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination. Space Weather, 9: S09001, doi:10.1029/2011SW000687.

    [122]

    Yue X, Schreiner W S, Rocken C, et al. 2011b. Evaluation of the orbit altitude electron density estimation and its effect on the Abel inversion from radio occultation measurements.Radio Sci., 46: RS1013, doi:10.1029/2010RS004514.

    [123]

    Yue X, Schreiner W S, Lin Y C, et al. 2011c. Data assimilation retrieval of electron density profiles from radio occultation measurements.J. Geophys. Res., 116: A03317, doi:10.1029/2010JA015980.

    [124]

    Yue X, Schreiner W S, Kuo Y H, et al. 2012a. Global 3-D ionospheric electron density reanalysis based on multi-source data assimilation. J. Geophys. Res., 117: A09325, doi:10.1029/2012JA017968.

    [125]

    Yue X, Schreiner W S, Kuo Y H. 2012b. A feasibility study of the radio occultation electron density retrieval aided by a global ionospheric data assimilation model.J. Geophys. Res.,117: A08301, doi:10.1029/2011JA017446.

    [126]

    Yue X, Schreiner W S, Rocken C, et al. 2012c. Artificial ionospheric Wave Number 4 structure below the F2 region due to the Abel retrieval of Radio Occultation measurements.GPS Solutions, 16(1): 1-7, doi:10.1007/s10291-010-0201-9.

    [127]

    Yue X, Schreiner W S, Kuo Y H, et al. 2013a. GNSS radio occultation technique and space weather monitoring. Proceedings of the 26th International Technical Meeting of The Satellite Division (ION GNSS 2013). Nashville, TN, 2508-2522.

    [128]

    Yue X, Schreiner W S, Kuo Y H. 2013b. Evaluating the effect of the global ionospheric map on aiding retrieval of radio occultation electron density profiles. GPS Solutions, 17(3): 327-335, doi:10.1007/s10291-012-0281-9.

    [129]

    Yue X, Schreiner W S, Kuo Y H, et al. 2013c. GNSS radio occultation (RO) derived electron density quality in high latitude and polar region: NCAR-TIEGCM simulation and real data evaluation. J. Atmos. Sol.-Terr. Phys., 98: 39-49, doi:10.1016/j.jastp.2013.03.009.

    [130]

    Yue X, Sokolovskiy S, Schreiner W S, et al. 2014a. Potential way to mitigate the second order ionospheric effect in neutral RO retrievals: preliminary evaluations. Presented at IROWG Ionosphere-Atmosphere Coordination Workshop.Boulder, CO, USA.

    [131]

    Yue X, Schreiner W S, Kuo Y H, et al. 2014b. Observing system simulation experiment study on imaging the ionosphere by assimilating observations from ground GNSS, LEO based Radio Occultation and Ocean Reflection, and Cross Link. IEEE Trans. Geosci. Remote Sens., 52(7): 3759-3773, doi:10.1109/TGRS.2013.2275753.

    [132]

    Yue X, Schreiner W S, Pedatella N, et al. 2014c. Space weather observations by GNSS radio occultation: from FORMOSAT-3/ COSMIC to FORMOSAT-7/COSMIC-2. Space Weather, 12(11): 616-621, doi:10.1002/2014SW001133.

    [133]

    Yue X, Schreiner W S, Zeng Z, et al. 2015a. Case study on complex sporadic E layers observed by GPS radio occultations. Atmos. Meas. Tech., 8: 225-236, doi:10.5194/amt-8-225-2015.

    [134]

    Yue X, Schreiner W S, Kuo Y H, et al. 2015b. Ionosphere equatorial ionization anomaly observed by GPS radio occultations during 2006-2014. J. Atmos. Sol.-Terr. Phys.,129: 30-40, doi:10.1016/j.jastp.2015.04.004.

    [135]

    Yunck T P, Liu C H, Ware R. 2000.A history of GPS sounding.Terr. Atmos. Ocean. Sci., 11(1): 1-20.

    [136]

    Yunck T P, Lautenbacher C, McGrath M, et al. (2012). CICERO: Community initiative for continuing Earth radio occultation. Presented at the 6th FORMOSAT-3/COSMIC data users workshop. Boulder, CO, USA.

    [137]

    Zeng Z, Burns A, Wang W B, et al. 2008. Ionospheric annual asymmetry observed by the COSMIC radio occultation measurements and simulated by the TIEGCM. J. Geophys. Res., 113: A07305, doi:10.1029/2007JA012897.

    [138]

    Zeng Z, Sokolovskiy S. 2010. Effect of sporadic E clouds on GPS radio occultation signals. Geophys. Res. Lett., 37: L18817, doi:10.1029/2010GL044561.

    [139]

    Zeng Z, Ho S P, Sokolovskiy S V, et al. 2012. Structural evolution of the Madden-Julian Oscillation from COSMIC radio occultation data.J. Geophys. Res.,117(D22): D22108, doi: 10.1029/2012JD017685.

    [140]

    Zhao B Q, Wan W X, Yue X, et al. 2011. Global characteristics of occurrence of an additional layer in the ionosphere observed by COSMIC/ FORMOSAT-3. Geophys. Res. Lett.,38: L02101, doi:10.1029/2010GL045744.

    [141]

    Zhao B Q, Wang M, Wang Y G, et al. 2013.East-west differences in F-region electron density at midlatitude: Evidence from the Far East region. J. Geophys. Res., 118(1): 542-553, doi:10.1029/2012JA018235.

    [142]

    Zou X, Vandenberghe F, Wang B, et al. 1999. A ray-tracing operator and its adjoint for the use of GPS/MET refraction angle measurements. J. Geophys. Res., 104(D18): 22301-22318.

    [143]

    Zus F, Grunwaldt L, Heise S, et al. 2014. Atmosphere sounding by GPS radio occultation: First results from TanDEM-X and comparison with TerraSAR-X. Adv. Space Res., 53(2): 272-279.

  • 加载中
计量
  • 文章访问数:  3909
  • PDF下载数:  3270
  • 施引文献:  0
出版历程
收稿日期:  2015-04-09
修回日期:  2015-07-09
上线日期:  2016-04-05

目录