基于强震动资料的破裂过程快速反演及其自动化的可行性

郑绪君, 张勇, 马强, 汪荣江. 2018. 基于强震动资料的破裂过程快速反演及其自动化的可行性. 地球物理学报, 61(10): 4021-4036, doi: 10.6038/cjg2018M0029
引用本文: 郑绪君, 张勇, 马强, 汪荣江. 2018. 基于强震动资料的破裂过程快速反演及其自动化的可行性. 地球物理学报, 61(10): 4021-4036, doi: 10.6038/cjg2018M0029
ZHENG XuJun, ZHANG Yong, MA Qiang, WANG RongJiang. 2018. Fast inversion of rupture process based on strong motion data and the feasibility of its automation. Chinese Journal of Geophysics (in Chinese), 61(10): 4021-4036, doi: 10.6038/cjg2018M0029
Citation: ZHENG XuJun, ZHANG Yong, MA Qiang, WANG RongJiang. 2018. Fast inversion of rupture process based on strong motion data and the feasibility of its automation. Chinese Journal of Geophysics (in Chinese), 61(10): 4021-4036, doi: 10.6038/cjg2018M0029

基于强震动资料的破裂过程快速反演及其自动化的可行性

  • 基金项目:

    国家自然科学基金(41574035和41822401)资助

详细信息
    作者简介:

    郑绪君, 男, 在读硕士, 主要从事震源快速反演研究.E-mail:zhengxujun@pku.edu.cn

    通讯作者: 张勇, 男, 北京大学百人计划研究员.E-mail:zhygn@163.com
  • 中图分类号: P315

Fast inversion of rupture process based on strong motion data and the feasibility of its automation

More Information
  • 破裂过程快速反演是目前快速获取地震灾害特征的主要手段之一,是震后应急工作的重要内容.近十年来基于远震资料开展的手动快速反演工作取得了长足进步,但在响应时间方面存在固有的局限,阻碍了反演效率的持续提升.我们根据新近发展的IDS(Iterative Deconvolution and Stacking)自动反演方法,尝试反演近场强震动资料确定破裂过程,探讨破裂过程反演自动化的可行性.对近几年国内发生的强震——包括2013年芦山MW6.6地震、2016年青海门源MW5.9地震和2016年新疆阿克陶MW6.6地震——的应用结果表明,采用IDS方法反演强震数据可以得到稳定可靠的破裂模型,且反演计算时间都控制在几十秒内.此外,以2008年汶川MW7.9地震为例,测试了不同子断层尺度、截止频率和地壳速度结构模型对反演结果的影响,发现滑动分布主要特征不强烈依赖于反演参数和地壳模型,证实了自动反演的稳定性和很强的适应能力.这一研究表明,基于强震动资料的自动反演可能是破裂过程快速反演的主要发展方向.特别地,在未来强震动台网持续发展、强震动数据的质量和共享速度都得到进一步提高之后,这一工作可望纳入到地震参数的常规自动测定工作中,为震后应急和海域地震的海啸预警提供急需的震源模型.

  • 加载中
  • 图 1 

    2013芦山地震震中附近区域构造背景和破裂过程结果

    Figure 1. 

    Regional tectonic background of the epicentral area and rupture model of the 2013 Lushan earthquake

    图 2 

    芦山地震强震动数据的观测波形(粗线)和合成波形(细线)的比较

    Figure 2. 

    Comparisons between the observed (bold lines) and synthetic (thin lines) seismograms of the Lushan earthquake

    图 3 

    2016年门源地震震中附近区域背景和破裂过程结果

    Figure 3. 

    Regional background of epicentral area and rupture model of the 2016 Menyuan earthquake

    图 4 

    门源地震强震动数据观测波形(粗线)和合成波形(细线)的比较

    Figure 4. 

    Comparisons between the observed (bold lines) and synthetic (thin lines) seismograms of the Menyuan earthquake

    图 5 

    2016阿克陶地震震中附近区域构造背景和破裂过程结果

    Figure 5. 

    Regional tectonic background of epicentral area and rupture model of the 2016 Aketao earthquake

    图 6 

    阿克陶地震强震动数据观测波形(粗线)和合成波形(细线)的比较

    Figure 6. 

    Comparisons between the observed (bold lines) and synthetic (thin lines) seismograms of the Aketao earthquake

    图 7 

    采用不同子断层尺度反演得到的汶川地震的破裂模型

    Figure 7. 

    Rupture models of the Wenchuan earthquake obtained with different sub-fault sizes

    图 8 

    采用不同低通滤波截止频率和速度结构模型得到的断层滑动量分布

    Figure 8. 

    Fault slip models obtained with different upper cut-off frequencies and velocity structures

  •  

    Asano K, Iwata T. 2009. Source rupture process of the 2004 Chuetsu, Mid-Niigata prefecture, Japan, earthquake inferred from waveform inversion with dense strong-motion data. Bulletin of the Seismological Society of America, 99(1):123-140. doi: 10.1785/0120080257

     

    Chen J, Li T, Sun J B, et al. 2016. Coseismic surface ruptures and seismogenic Muji fault of the 25 November 2016 Arketao MW6.6 earthquake in northern Pamir. Seismology and Geology (in Chinese), 38(4):1160-1174. http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201604028.htm

     

    Deng Q D, Cheng S P, Ma J, et al. 2014. Seismic activities and earthquake potential in the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 57(7):2025-2042, doi:10.6038/cjg20140701.

     

    Diao F D, Wang R J, Aochi H, et al. 2016. Rapid kinematic finite-fault inversion for an MW7+ scenario earthquake in the Marmara Sea:An uncertainty study. Geophysical Journal International, 204(2):813-824. doi: 10.1093/gji/ggv459

     

    Ekström G, Nettles M, Dziewoński A M. 2012. The global CMT project 2004-2010:Centroid-moment tensors for 13, 017 earthquakes. Physics of the Earth and Planetary Interiors, 200-201:1-9. doi: 10.1016/j.pepi.2012.04.002

     

    Fang L H, Wu J P, Wang W L, et al. 2013. Relocation of the mainshock and aftershock sequences of MS7.0 Sichuan Lushan earthquake. Chinese Science Bulletin, 58(28-29):3451-3459. doi: 10.1007/s11434-013-6000-2

     

    Feng W P, Tian Y F, Zhang Y, et al. 2017. A slip gap of the 2016 MW6.6 Muji, Xinjiang, China, earthquake inferred from sentinel-1 TOPS interferometry. Seismological Research Letters, 88(4):1054-1064. doi: 10.1785/0220170019

     

    Geng J, Teferle F N, Meng X, et al. 2010. Kinematic precise point positioning at remote marine platforms. GPS Solutions, 14(4):343-350. doi: 10.1007/s10291-009-0157-9

     

    Hao J L, Ji C, Wang W M, et al. 2013. Rupture history of the 2013 MW6.6 Lushan earthquake constrained with local strong motion and teleseismic body and surface waves. Geophysical Research Letters, 40(20):5371-5376. doi: 10.1002/2013GL056876

     

    Hayes G P, Rivera L, Kanamori H. 2009. Source inversion of the W-Phase:Real-time implementation and extension to low magnitudes. Seismological Research Letters, 80(5):817-822. doi: 10.1785/gssrl.80.5.817

     

    Heimann S. 2010. A robust method to estimate kinematic earthquake source parameters[Ph. D. thesis]. Hamburg: University of Hamburg, Germany.

     

    Hsieh M C, Zhao L, Ji C, et al. 2016. Efficient inversions for earthquake slip distributions in 3D structures. Seismological Research Letters, 87(6):1342-1354. doi: 10.1785/0220160050

     

    Hu C Z, Yang P X, Li Z M, et al. 2016. Seismogenic mechanism of the 21 January 2016 Menyuan, Qinghai MS6.4 earthquake. Chinese Journal of Geophysics (in Chinese), 59(5):1637-1646, doi:10.6038/cjg20160509.

     

    Huang Y, Wu J P, Zhang T Z, et al. 2008. Relocation of the MS8.0 Wenchuan earthquake and its aftershock sequence. Science in China Series D:Earth Sciences, 51(12):1703-1711. doi: 10.1007/s11430-008-0135-z

     

    Jin M P, Wang R J, Tu H W. 2014. Slip model and co-seismic displacement field derived from near-source strong motion records of the Lushan MS7.0 earthquake on 20 April 2013. Chinese Journal of Geophysics (in Chinese), 57(1):129-137, doi:10.6038/cjg20140112.

     

    Kanamori H, Rivera L. 2008. Source inversion of W phase:Speeding up seismic tsunami warning. Geophysical Journal International, 175(1):222-238. doi: 10.1111/gji.2008.175.issue-1

     

    Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1):108-124. doi: 10.1111/gji.1995.122.issue-1

     

    Laske G, Masters G, Ma Z, et al. 2013. Update on CRUST1.0-A 1-degree global model of Earth's crust. Geophysical Research Abstracts, 15:EGU2013-2658. http://adsabs.harvard.edu/abs/2013EGUGA..15.2658L

     

    Li J, Liu C L, Zheng Y, et al. 2017. Rupture process of the MS7.0 Lushan earthquake determined by joint inversion of local static GPS records, strong motion data, and teleseismograms. Journal of Earth Science, 28(2):404-410. doi: 10.1007/s12583-017-0757-1

     

    Li X X, Dick G, Ge M R, et al. 2014. Real-time GPS sensing of atmospheric water vapor:Precise point positioning with orbit, clock, and phase delay corrections. Geophysical Research Letters, 41(10):3615-3621. doi: 10.1002/2013GL058721

     

    Liu C L, Zheng Y, Ge C, et al. 2013. Rupture process of the MS7.0 Lushan earthquake, 2013. Science China Earth Sciences, 56(7):1187-1192. doi: 10.1007/s11430-013-4639-9

     

    Liu C L, Zheng Y, Xiong X, et al. 2014. Rupture process of MS6.5 Ludian earthquake constrained by regional broadband seismograms. Chinese Journal of Geophysics (in Chinese), 57(9):3028-3037, doi:10.6038/cjg20140927.

     

    Liu M J, Wang F Y, Jia S X, et al. 2014. Jianganlin surface fracture induced by 2013 Lushan MS7.0 earthquake. Acta Seismologica Sinica (in Chinese), 36(1):129-138, 159. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201401011.htm

     

    Liu Q, Wen X Z, Shao Z G. 2016. Joint inversion for coseismic slip of the 2013 MS7.0 Lushan earthquake from GPS, leveling and strong motion observations. Chinese Journal of Geophysics (in Chinese), 59(6):2113-2125, doi:10.6038/cjg20160617.

     

    Ni S D. 2008. Progress in real-time seismology. Bulletin of Chinese Academy of Sciences (in Chinese), 23(4):311-316. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYYX200804007.htm

     

    Saraò A, Das S, Suhadolc P. 1998. Effect of non-uniform station coverage on the inversion for earthquake rupture history for a Haskell-type source model. Journal of Seismology, 2(1):1-25. doi: 10.1023/A:1009795916726

     

    Shan X J, Qu C Y, Song X G, et al. 2009. Coseismic surface deformation caused by the Wenchuan MS8.0 earthquake from InSAR data analysis. Chinese Journal of Geophysics (in Chinese), 52(2):496-504. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200902022.htm

     

    Shao Z G, Zhou C H, Xu J, et al. 2014. Baseline correction of strong-motion records of Wenchuan MS8.0 earthquake and its primary application on dislocation inversion. Earth Science-Journal of China University of Geosciences (in Chinese), 2014, 39(12):1903-1914. doi: 10.3799/dqkx.2014.175

     

    Tu R, Wang R J, Zhang Y, et al. 2014. Application of a net-based baseline correction scheme to strong-motion records of the 2011 MW9.0 Tohoku earthquake. Geophysical Journal International, 197(3):1808-1821. doi: 10.1093/gji/ggu092

     

    Wan Y G, Shen Z K, Bürgmann R, et al. 2017. Fault geometry and slip distribution of the 2008 MW7.9 Wenchuan, China earthquake, inferred from GPS and InSAR measurements. Geophysical Journal International, 208(2):748-766. doi: 10.1093/gji/ggw421

     

    Wang R, Schurr B, Milkereit C, et al. 2011. An improved automatic scheme for empirical baseline correction of digital strong-motion records. Bulletin of the Seismological Society of America, 101(5):2029-2044. doi: 10.1785/0120110039

     

    Wang R J, Parolai S, Ge M R, et al. 2013. The 2011 MW9.0 Tohoku earthquake:Comparison of GPS and strong-motion data. Bulletin of the Seismological Society of America, 103(2B):1336-1347. doi: 10.1785/0120110264

     

    Wang R J, Heimann S, Zhang Y, et al. 2017a. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure. Geophysical Journal International, 210(3):1739-1764. doi: 10.1093/gji/ggx259

     

    Wang S, Xu C J, Wen Y M, et al. 2017b. Slip model for the 25 November 2016 MW6.6 Aketao earthquake, Western China, revealed by sentinel-1 and ALOS-2 observations. Remote Sensing, 9(4):325, doi:10.3390/rs9040325.

     

    Wang W M, Hao J L, Yao Z X. 2013. Preliminary result of rupture process for Apr. 20, 2013, Lushan Earthquake, Sichuan, China. Chinese Journal of Geophysics (in Chinese), 56(4):1412-1417, doi:10.6038/cjg20130436.

     

    Xu L S, Chen Y T. 1999. Tempo-spatial rupture process of the 1997 Mani, Tibet, China earthquake of MS7.9. Acta Seismologica Sinica (in Chinese), 12(5):449-459.

     

    Xu X W, Wen X Z, Yu G H, et al. 2009. Coseismic reverse-and oblique-slip surface faulting generated by the 2008 MW7.9 Wenchuan earthquake, China. Geology, 37(6):515-518. doi: 10.1130/G25462A.1

     

    Zhang J, Zhang H J, Chen E H, et al. 2014a. Real-time earthquake monitoring using a search engine method. Nature Communications, 5:5664, doi:10.1038/ncomms6664.

     

    Zhang L F, Fatchurochman I, Liao W L, et al. 2013. Source rupture process inversion of the 2013 Lushan earthquake, China. Geodesy and Geodynamics, 4(2):16-21. doi: 10.3724/SP.J.1246.2013.02016

     

    Zhang X, Xu L S. 2015. Inversion of the apparent source time functions for the rupture process of the Nepal MS8.1 earthquake. Chinese Journal of Geophysics (in Chinese), 58(6):1881-1890, doi:10.6038/cjg20150604.

     

    Zhang X, Yan C, Xu L S. 2016. Analysis of the Love-waves for the rupture processes of the 2014 earthquake-doublet of Kangding, Sichuan. Chinese Journal of Geophysics (in Chinese), 59(7):2453-2467, doi:10.6038/cjg20160712.

     

    Zhang X, Feng W P, Xu L S, et al. 2017a. The source-process inversion and the intensity estimation of the 2017 MS7.0 Jiuzhaigou earthquake. Chinese Journal of Geophysics (in Chinese), 60(10):4105-4116, doi:10.6038/cjg20171035.

     

    Zhang X, Yan C, Xu L S, et al. 2017b. Source complexity of the 2016 Aketao MS6.7 earthquake and its intensity. Chinese Journal of Geophysics (in Chinese), 60(4):1411-1422, doi:10.6038/cjg20170415.

     

    Zhang Y, Xu L S, Chen Y T. 2010. Fast inversion of rupture process for 14 April 2010 Yushu, Qinghai, earthquake. Acta Seismologica Sinica (in Chinese), 32(3):361-365. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DZXY201003000&dbname=CJFD&dbcode=CJFQ

     

    Zhang Y, Chen X T, Xu L S. 2012. Fast and robust inversion of earthquake source rupture process and its application to earthquake emergency response. Earthquake Science, 25(2):121-128. doi: 10.1007/s11589-012-0838-2

     

    Zhang Y, Xu L S, Chen Y T. 2013. Rupture process of the Lushan 4.20 earthquake and preliminary analysis on the disaster-causing mechanism. Chinese Journal of Geophysics (in Chinese), 56(4):1408-1411, doi:10.6038/cjg20130435.

     

    Zhang Y, Xu L S, Chen Y T, et al. 2014a. Rupture process of the 3 August 2014 Ludian, Yunnan, MW6.1(MS6.5) earthquake. Chinese Journal of Geophysics (in Chinese), 57(9):3052-3059, doi:10.6038/cjg20140930.

     

    Zhang Y, Wang R J, Zschau J, et al. 2014b. Automatic imaging of earthquake rupture processes by iterative deconvolution and stacking of high-rate GPS and strong motion seismograms. Journal of Geophysical Research:Solid Earth, 119(7):5633-5650. doi: 10.1002/2013JB010469

     

    Zhang Y, Wang R J, Chen Y T, et al. 2014c. Kinematic rupture model and hypocenter relocation of the 2013 MW6.6 Lushan earthquake constrained by strong-motion and teleseismic data. Seismological Research Letters, 85(1):15-22. doi: 10.1785/0220130126

     

    Zhang Y, Xu L S, Chen Y T. 2015a. Rupture process of the 2015 Nepal MW7.9 earthquake:Fast inversion and preliminary joint inversion. Chinese Journal of Geophysics (in Chinese), 58(5):1804-1811, doi:10.6038/cjg20150530.

     

    Zhang Y, Chen Y T, Xu L S, et al. 2015b. The 2014 MW6.1 Ludian, Yunnan, earthquake:A complex conjugated ruptured earthquake. Chinese Journal of Geophysics (in Chinese), 58(1):153-162, doi:10.6038/cjg20150113.

     

    Zhang Y, Wang R J, Chen Y T. 2015c. Stability of rapid finite-fault inversion for the 2014 MW6.1 South Napa earthquake. Geophysical Research Letters, 42(23):10263-10272. doi: 10.1002/2015GL066244

     

    Zhang Y, et al. 2016.http://www.cea-igp.ac.cn/tpxw/275080.html.[2016-11-25].

     

    Zhao C P, Zhou L Q, Chen Z L. 2013. Source rupture process of Lushan MS7.0 earthquake, Sichuan, China and its tectonic implications. Chinese Science Bulletin, 58(28-29):3444-3450. doi: 10.1007/s11434-013-6017-6

     

    Zhao Q, Wang S X, Jiang F Y, et al. 2017. Coseismic deformation field and fault slip distribution of the 2016 Qinghai Menyuan MW5.9 earthquake from InSAR measurement. Earthquake (in Chinese), 37(2):95-105. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DIZN201702009.htm

     

    Zhao X, Duputel Z, Huang Z B, et al. 2014. Assessment of the automatic centroid moment tensor inversion system for global strong earthquake (MW ≥ 6.5) based on the W-phase method. Acta Seismologica Sinica (in Chinese), 36(5):800-809, 980.

     

    Zheng X J, Zhang Y, Wang R J. 2017. Estimating the rupture process of the 8 August 2017 Jiuzhaigou earthquake by inverting strong-motion data with IDS method. Chinese Journal of Geophysics (in Chinese), 60(11):4421-4430, doi:10.6038/cjg20171128.

     

    Zhou T G, Qian X B, Zhang B B. 2013. Investigation and analysis of damage to rural houses in Lushan earthquake. Journal of Earthquake Engineering and Engineering Vibration (in Chinese), 33(3):53-58.

     

    陈杰, 李涛, 孙建宝等. 2016. 2016年11月25日新疆阿克陶MW6.6地震发震构造与地表破裂.地震地质, 38(4):1160-1174. doi: 10.3969/j.issn.0253-4967.2016.04.028

     

    邓起东, 程绍平, 马冀等. 2014.青藏高原地震活动特征及当前地震活动形势.地球物理学报, 57(7):2025-2042, doi:10.6038/cjg20140701. http://www.geophy.cn//CN/abstract/abstract10474.shtml

     

    房立华, 吴建平, 王未来等. 2013.四川芦山MS7.0级地震及其余震序列重定位.科学通报, 58(20):1901-1909. http://qikan.cqvip.com/article/detail.aspx?id=46555526

     

    胡朝忠, 杨攀新, 李智敏等. 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨.地球物理学报, 59(5):1637-1646, doi:10.6038/cjg20160509.

     

    黄媛, 吴建平, 张天中等. 2008.汶川8.0级大地震及其余震序列重定位研究.中国科学D辑:地球科学, 38(10):1242-1249. http://qikan.cqvip.com/article/detail.aspx?id=29072334

     

    金明培, 汪荣江, 屠泓为. 2014.芦山7级地震的同震位移估计和震源滑动模型反演尝试.地球物理学报, 57(1):129-137, doi:10.6038/cjg20140112. http://www.geophy.cn//CN/abstract/abstract10054.shtml

     

    刘成利, 郑勇, 葛粲等. 2013. 2013年芦山7.0级地震的动态破裂过程.中国科学:地球科学, 2013, 43(6):1020-1026. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXK201306010&dbname=CJFD&dbcode=CJFQ

     

    刘成利, 郑勇, 熊熊等. 2014.利用区域宽频带数据反演鲁甸MS6.5级地震震源破裂过程.地球物理学报, 57(9):3028-3037, doi:10.6038/cjg20140927. http://www.geophy.cn//CN/abstract/abstract10740.shtml

     

    刘明军, 王夫运, 嘉世旭等. 2014.芦山MS7.0地震箭杆林地表破裂带研究.地震学报, 36(1):129-138, 159. doi: 10.3969/j.issn.0253-3782.2014.01.011

     

    刘琦, 闻学泽, 邵志刚. 2016.基于GPS、水准和强震动观测资料联合反演2013年芦山7.0级地震同震滑动分布.地球物理学报, 59(6):2113-2125, doi:10.6038/cjg20160617. http://www.geophy.cn//CN/abstract/abstract12856.shtml

     

    倪四道. 2008.应急地震学的研究进展.中国科学院院刊, 23(4):311-316. doi: 10.3969/j.issn.1000-3045.2008.04.007

     

    单新建, 屈春燕, 宋小刚等. 2009.汶川MS8.0级地震InSAR同震形变场观测与研究.地球物理学报, 52(2):496-504. http://www.geophy.cn//CN/abstract/abstract931.shtml

     

    邵志刚, 周朝晖, 徐晶等. 2014.汶川MS8.0地震强震动基线改正及其在位错反演中的初步应用.地球科学——中国地质大学学报, 2014, 39(12):1903-1914. http://d.old.wanfangdata.com.cn/Periodical/dqkx201412019

     

    王卫民, 郝金来, 姚振兴. 2013. 2013年4月20日四川芦山地震震源破裂过程反演初步结果.地球物理学报, 56(4):1412-1417, doi:10.6038/cjg20130436. http://www.geophy.cn//CN/abstract/abstract9456.shtml

     

    许力生, 陈运泰. 1999. 1997年中国西藏玛尼MS7.9地震的时空破裂过程.地震学报, 1999, 21(5):449-459. doi: 10.3321/j.issn:0253-3782.1999.05.001

     

    张旭, 许力生. 2015.利用视震源时间函数反演尼泊尔MS8.1地震破裂过程.地球物理学报, 58(6):1881-1890, doi:10.6038/cjg20150604. http://www.geophy.cn//CN/abstract/abstract11571.shtml

     

    张旭, 严川, 许力生. 2016. 2014年四川康定双震震源的勒夫波分析.地球物理学报, 59(7):2453-2467, doi:10.6038/cjg20160712. http://www.geophy.cn//CN/abstract/abstract12970.shtml

     

    张旭, 冯万鹏, 许力生等. 2017a. 2017年九寨沟MS7.0级地震震源过程反演与烈度估计.地球物理学报, 60(10):4105-4116, doi:10.6038/cjg20171035. http://www.geophy.cn//CN/abstract/abstract14072.shtml

     

    张旭, 严川, 许力生等. 2017b. 2016年阿克陶MS6.7地震震源复杂性与烈度.地球物理学报, 60(4):1411-1422, doi:10.6038/cjg20170415. http://www.geophy.cn//CN/abstract/abstract13609.shtml

     

    张勇, 许力生, 陈运泰. 2010. 2010年4月14日青海玉树地震破裂过程快速反演.地震学报, 32(3):361-365. doi: 10.3969/j.issn.0253-3782.2010.03.011

     

    张勇, 许力生, 陈运泰. 2013.芦山4.20地震破裂过程及其致灾特征初步分析.地球物理学报, 56(4):1408-1411, doi:10.6038/cjg20130435. http://www.geophy.cn//CN/abstract/abstract9455.shtml

     

    张勇, 许力生, 陈运泰等. 2014. 2014年8月3日云南鲁甸MW6.1(MS6.5)地震破裂过程.地球物理学报, 2014, 57(9):3052-3059, doi:10.6038/cjg20140930. http://www.geophy.cn//CN/abstract/abstract10743.shtml

     

    张勇, 许力生, 陈运泰. 2015a. 2015年尼泊尔MW7.9地震破裂过程:快速反演与初步联合反演.地球物理学报, 58(5):1804-1811, doi:10.6038/cjg20150530. http://www.geophy.cn//CN/abstract/abstract11510.shtml

     

    张勇, 陈运泰, 许力生等. 2015b. 2014年云南鲁甸MW6.1地震:一次共轭破裂地震.地球物理学报, 2015, 58(1):153-162, doi:10.6038/cjg20150113. http://www.geophy.cn//CN/abstract/abstract11166.shtml

     

    张勇等. 2016. http://www.cea-igp.ac.cn/tpxw/275080.html.[2016-11-25].

     

    赵翠萍, 周连庆, 陈章立. 2013. 2013年四川芦山MS7.0级地震震源破裂过程及其构造意义.科学通报, 58(20):1894-1900. http://qikan.cqvip.com/article/detail.aspx?id=46555525

     

    赵强, 王双绪, 蒋锋云等. 2017.利用InSAR技术研究2016年青海门源MW5.9地震同震形变场及断层滑动分布.地震, 37(2):95-105. doi: 10.3969/j.issn.1000-3274.2017.02.009

     

    赵旭, Duputel Z, 黄志斌等. 2014.基于W震相技术的全球强震(MW ≥ 6.5)矩心矩张量自动反演系统评估.地震学报, 36(5):800-809, 980. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DZXB201405005&dbname=CJFD&dbcode=CJFQ

     

    郑绪君, 张勇, 汪荣江. 2017.采用IDS方法反演强震数据确定2017年8月8日九寨沟地震的破裂过程.地球物理学报, 60(11):4421-4430, doi:10.6038/cjg20171128. http://www.geophy.cn//CN/abstract/abstract14185.shtml

     

    周铁钢, 钱相博, 张冰冰. 2013.芦山地震农村房屋震害调查与分析.地震工程与工程振动, 33(3):53-58. http://d.old.wanfangdata.com.cn/Periodical/dzgcygczd201303007

  • 加载中

(8)

计量
  • 文章访问数:  2479
  • PDF下载数:  478
  • 施引文献:  0
出版历程
收稿日期:  2018-01-18
修回日期:  2018-06-04
上线日期:  2018-10-05

目录