2021年5月22日青海玛多MS7.4地震发震构造分析

徐志国, 梁姗姗, 张广伟, 梁建宏, 邹立晔, 李旭茂, 陈彦含. 2021. 2021年5月22日青海玛多MS7.4地震发震构造分析. 地球物理学报, 64(8): 2657-2670, doi: 10.6038/cjg2021P0390
引用本文: 徐志国, 梁姗姗, 张广伟, 梁建宏, 邹立晔, 李旭茂, 陈彦含. 2021. 2021年5月22日青海玛多MS7.4地震发震构造分析. 地球物理学报, 64(8): 2657-2670, doi: 10.6038/cjg2021P0390
XU ZhiGuo, LIANG ShanShan, ZHANG GuangWei, LIANG JianHong, ZOU LiYe, LI XuMao, CHEN YanHan. 2021. Analysis of seismogenic structure of Madoi, Qinghai MS7.4 earthquake on May 22, 2021. Chinese Journal of Geophysics (in Chinese), 64(8): 2657-2670, doi: 10.6038/cjg2021P0390
Citation: XU ZhiGuo, LIANG ShanShan, ZHANG GuangWei, LIANG JianHong, ZOU LiYe, LI XuMao, CHEN YanHan. 2021. Analysis of seismogenic structure of Madoi, Qinghai MS7.4 earthquake on May 22, 2021. Chinese Journal of Geophysics (in Chinese), 64(8): 2657-2670, doi: 10.6038/cjg2021P0390

2021年5月22日青海玛多MS7.4地震发震构造分析

  • 基金项目:

    国家自然科学基金项目(41804053)和应急管理部国家自然灾害防治研究院基本科研业务专项(ZDJ2019-16)共同资助

详细信息
    作者简介:

    徐志国, 高级工程师, 主要从事震源机制反演和海啸预警技术研究.E-mail: xuzhg04@sina.com

    通讯作者: 张广伟, 副研究员, 主要从事震源机制反演和地震定位研究.E-mail: zhanggw@mail.ustc.edu.cn
  • 中图分类号: P315

Analysis of seismogenic structure of Madoi, Qinghai MS7.4 earthquake on May 22, 2021

More Information
  • 精确的余震序列定位及震源机制反演能够提供强震破裂尺度、发震断层面和区域应力场等信息,为震后应急决策和分析发震构造提供科学依据.本研究采用双差定位方法对2021年5月22日青海玛多MS7.4地震序列进行精定位,得到震后9天内共1055个事件的精定位结果;同时,利用青海、西藏、四川和甘肃台网记录的波形数据,采用近震全波形矩张量反演方法得到了玛多MS7.4地震15次中等余震(MS≥4.0)震源机制解,并进一步反演得到震源区构造应力场.地震定位结果显示,玛多主震位于玛多—甘德断裂与甘德南缘断裂之间,发震断层面较为陡立,余震序列在时间上呈现出不对称的双侧破裂模式,且沿主破裂面的两端均表现出分支破裂特征,说明本次地震触发了分支断层;震源机制结果显示15次中等余震包含12次走滑型和3次逆冲型地震,暗示主断层破裂受到局部异常结构的影响;另外,应力场反演表明震源区为近EW向挤压特征,与该区域最大水平主压应力优势取向一致.结合上述结果以及周边地质构造背景,我们认为玛多地震发震构造为位于巴颜喀拉地块内部一条NWW向的高倾角左旋走滑断裂,主破裂触发了东西两端分支断层活动,断层面的非均匀性控制了余震序列时空分布的差异性.

  • 加载中
  • 图 1 

    2000年以来青藏高原及周边地区强震活动与本次玛多MS7.4地震位置

    Figure 1. 

    The location of strong earthquakes occurred in Tibetan Plateau and its surroundings since 2000 and Madoi MS7.4 earthquake

    图 2 

    本研究所使用的(a)台站分布和(b)速度模型

    Figure 2. 

    (a) Distribution of seismic stations and (b) Velocity models used in this study

    图 3 

    青海玛多地震序列重定位震中分布(a)与剖面图(b和c)

    Figure 3. 

    Top view (a) and cross sections (b and c) maps of the relocated Madoi, Qinghai earthquake sequence

    图 4 

    2021年5月22日玛多MS5.1地震矩心深度与波形互相关关系

    Figure 4. 

    Centroid depth and cross-correlation coefficient of the Madoi MS5.1 earthquake on May 22, 2021

    图 5 

    玛多MS5.1地震最佳反演结果对应的观测波形(黑色)与拟合波形(红色)比较图

    Figure 5. 

    Comparison of observed (black) and synthetic (red) waveform for the Madoi MS5.1 earthquake corresponding to the best inversion results

    图 6 

    采用大折刀法分析断层面参数不确定性

    Figure 6. 

    Uncertainties analysis of fault plane parameters using Jackknife method

    图 7 

    玛多MS7.4主震和部分中强余震震源机制解平面和剖面图

    Figure 7. 

    Top view (a) and cross-section (b) maps showing the focal mechanism solutions of the Madoi MS7.4 mainshock and partial moderate strong aftershocks

    图 8 

    玛多地震序列震源处应力场反演

    Figure 8. 

    Stress field inversion in focal region of the Madoi earthquake sequence

    图 9 

    玛多MS7.4地震发震断层结构示意图

    Figure 9. 

    Sketch of seismogenic fault structure of Madoi MS7.4 earthquake

    表 1 

    玛多7.4级地震中强余震震源参数表

    Table 1. 

    Source parameters of the moderate aftershocks of the Madoi MS7.4 earthquake

    编号 发震时刻 震中位置 节面Ⅰ 节面Ⅱ 深度/km MW VR CN 滤波频段/Hz
    纬度/(°) 经度/(°) 走向/(°) 倾角/(°) 滑动角/(°) 走向/(°) 倾角/(°) 滑动角/(°)
    1 2021-05-22 05∶59∶34.7 34.64 98.46 162 54 104 320 38 72 5 4.5 0.7 6.8 0.03~0.05
    2 2021-05-22 10∶29∶34.1 34.85 97.50 26 65 163 123 75 26 5 5.0 0.84 4.4 0.02~0.04
    3 2021-05-22 10∶38∶44.4 34.55 98.94 281 40 76 119 52 102 9 4.9 0.84 2.5 0.02~0.04
    4 2021-05-22 11∶21∶16.8 34.72 98.07 86 61 -19 186 73 -150 11 4.8 0.83 2.7 0.03~0.05
    5 2021-05-22 11∶30∶43.6 34.28 100.90 117 87 -24 208 66 -177 11 4.6 0.81 2.3 0.04~0.06
    6 2021-05-22 12∶03∶35.2 35.63 99.12 93 84 -36 187 54 -172 5 4.2 0.68 4 0.03~0.05
    7 2021-05-22 15∶06∶22.2 34.51 98.92 172 82 162 265 73 8 11 4.8 0.82 2.8 0.03~0.05
    8 2021-05-22 17∶39∶34.4 34.77 97.65 130 60 6 37 85 150 4 4.6 0.7 6.8 0.03~0.05
    9 2021-05-23 15∶24∶31.7 34.48 99.06 174 83 161 267 71 7 11 4.2 0.7 1.7 0.06~0.08
    10 2021-05-24 16∶31∶27.9 34.78 97.56 44 68 166 140 77 22 5 4.3 0.73 4.2 0.03~0.05
    11 2021-05-24 22∶15∶19.4 34.45 99.02 65 65 -2 156 88 -155 7 4.5 0.7 2.7 0.04~0.06
    12 2021-05-25 07∶00∶19.6 34.73 98.04 140 56 4 48 87 146 8 4.3 0.62 3.1 0.04~0.06
    13 2021-05-27 21∶06∶07.0 34.46 99.17 130 44 85 317 47 94 9 4.9 0.79 3.0 0.04~0.06
    14 2021-05-30 12∶50∶08.1 34.67 98.31 299 59 0 29 90 -149 11 4.9 0.78 2.3 0.02~0.04
    15 2021-05-30 14∶55∶14.6 34.65 98.48 205 86 119 303 29 9 11 4.9 0.8 2.8 0.03~0.05
    下载: 导出CSV
  •  

    Bouchon M. 1981. A simple method to calculate Green's functions for elastic layered media. Bulletin of the Seismological Society of America, 71(4): 959-971. doi: 10.1785/BSSA0710040959

     

    Boyd O S, Dreger D S, Lai V H, et al. 2015. A systematic analysis of seismic moment tensor at The Geysers geothermal field, California. Bulletin of the Seismological Society of America, 105(6): 2969-2986. doi: 10.1785/0120140285

     

    Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2

     

    Deng Q D, Gao X, Chen G H, et al. 2010. Recent tectonic activity of Bayankala fault-block and the Kunlun-Wenchuan earthquake series of the Tibetan Plateau. Earth Science Frontiers (in Chinese), 17(5): 163-178. http://www.ingentaconnect.com/content/el/18725791/2010/00000017/00000005/art00015

     

    Deng Q D, Cheng S P, Ma J, et al. 2014. Seismic activities and earthquake potential in the Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 57(7): 2025-2042, doi:10.6038/cjg20140701.

     

    Fan T Y, Chen Q C, Wu Z H, et al. 2013. 3D viscoelastic modeling on the present crustal stress of eastern Qingzang Plateau including active tectonics. Progress in Geophysics (in Chinese), 28(3): 1140-1149, doi:10.6038/pg20130305.

     

    Fang L H, Wu J P, Wang W L, et al. 2013. Relocation of the mainshock and aftershock sequences of MS7.0 Sichuan Lushan earthquake. Chinese Science Bulletin, 58(28-29): 3451-3459. doi: 10.1007/s11434-013-6000-2

     

    Fang L H, Wu J P, Wang W L, et al. 2015. Relocation of the 2014 MS7.3 earthquake sequence in Yutian, Xinjiang. Chinese Journal of Geophysics (in Chinese), 58(3): 802-808, doi:10.6038/cjg20150310.

     

    Gao X, Deng Q D. 2013. Activity analysis of large earthquakes in boundary faults around the Bayankala faulting block. Acta Geologica Sinica (in Chinese), 87(1): 9-19.

     

    Huang S Y, Yao H J, Lu Z W, et al. 2020. High-resolution 3-D shear wave velocity model of the Tibetan plateau: implications for crustal deformation and porphyry Cu deposit formation. Journal of Geophysical Research: Solid Earth, 125(7): e2019JB019215, doi:10.1029/2019JB019215.

     

    Jia S X, Lin J Y, Guo W B, et al. 2017. Investigation on diversity of crustal structures beneath the Bayan Har block. Chinese Journal of Geophysics (in Chinese), 60(6): 2226-2238, doi:10.6038/cjg20170616.

     

    Kennett B L N, Kerry N J. 1979. Seismic waves in a stratified half space. Geophysical Journal International, 57(3): 557-583. doi: 10.1111/j.1365-246X.1979.tb06779.x

     

    Lei J S, Zhao D P, Su J R, et al. 2009. Fine seismic structure under the Longmenshan fault zone and the mechanism of the large Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 52(2): 339-345. http://www.oalib.com/paper/1568771

     

    Li Z W, Xu Y, Huang R Q, et al. 2011. Crustal P-wave velocity structure of the Longmenshan region and its tectonic implications for the 2008 Wenchuan earthquake. Science China Earth Sciences, 54(9): 1386-1393. doi: 10.1007/s11430-011-4177-2

     

    Liang M J, Yang Y, Du F, et al. 2020. Late quaternary activity of the central segment of the Dari fault and restudy of the surface rupture zone of the 1947 M73/4 Dari earthquake, Qinghai province. Seismology and Geology (in Chinese), 42(3): 703-714.

     

    Liang S S, Lei J S, Xu Z G, et al. 2018. Relocation of aftershocks of the 2017 Jiuzhaigou, Sichuan, MS7.0 earthquake and inversion for focal mechanism of the mainshock. Chinese Journal of Geophysics (in Chinese), 61(5): 2163-2175, doi:10.6038/cjg2018L0508.

     

    Liu J, Yi G X, Zhang Z W, et al. 2013. Introduction to the Lushan, Sichuan M7.0 earthquake on 20 April 2013. Chinese Journal of Geophysics (in Chinese), 56(4): 1404-1407, doi:10.6038/cjg20130434.

     

    Liu L, Li Y J, Zhu L Y, et al. 2021. Influence of the 1947 Dari M7.7 earthquake on stress evolution along the boundary fault of the Bayan Har block: insights from numerical simulation. Chinese Journal of Geophysics (in Chinese), 64(7): 2221-2231, doi:10.6038/cjg2021P0194.

     

    Sheng S Z, Wan Y G, Wang W L, et al. 2014. The fault plane parameter determination of the 2010 Yushu MS7.1 earthquake. Progress in Geophysics (in Chinese), 29(4): 1555-1562, doi:10.6038/pg20140409.

     

    Sokos E N, Zahradnik J. 2008. ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Computers & Geosciences, 34(8): 967-977.

     

    Sokos E, Zahradník J. 2013. Evaluating centroid-moment-tensor uncertainty in the new version of ISOLA software. Seismological Research Letters, 84(4): 656-665. doi: 10.1785/0220130002

     

    Sun X Z, Xu X W, Chen L C, et al. 2012. Surface rupture features of the 2010 Yushu earthquake and its tectonic implication. Chinese Journal of Geophysics (in Chinese), 55(1): 155-170, doi:10.6038/j.issn.0001-5733.2012.01.015.

     

    Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

     

    Vavryčuk V. 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1): 69-77. doi: 10.1093/gji/ggu224

     

    Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6): 1353-1368. doi: 10.1785/0120000006

     

    Wan Y G, Shen Z K, Diao G L, et al. 2008. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequence. Chinese Journal of Geophysics (in Chinese), 51(3): 793-804, doi:10.3321/j.issn:0001-5733.2008.03.020.

     

    Wan Y G, Shen Z K, Sheng S Z, et al. 2009. The influence of 2008 Wenchuan earthquake on surrounding faults. Acta Seismologica Sinica (in Chinese), 31(2): 128-139. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB200902002.htm

     

    Wang C Y, Lou H, Lv Z Y, et al. 2008. S-wave crustal and upper mantle's velocity structure in the eastern Tibetan Plateau-Deep environment of lower crustal flow. Science in China Series D: Earth Sciences, 51(2): 263-274. doi: 10.1007/s11430-008-0008-5

     

    Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774, doi:10.1029/2019JB018774.

     

    Wang W L, Wu J P, Fang L H, et al. 2013. Relocation of the Yushu MS7.1 earthquake and its aftershocks in 2010 from HypoDD. Science China Earth Sciences, 56(2): 182-191. doi: 10.1007/s11430-012-4450-z

     

    Wei B L. 1980. Cause of the change of focal mechanisms of aftershocks. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 23(1): 25-34. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX198001003.htm

     

    Wen X Z. 2018. The 2008 Wenchuan, 2013 Lushan and 2017 Jiuzhaigou earthquakes, Sichuan, in the last more than one thousand years of rupture history of the eastern margin of the Bayan Har block. Acta Seismologica Sinica (in Chinese), 40(3): 255-267.

     

    Wu J P, Huang Y, Zhang T Z, et al. 2009. Aftershock distribution of the MS8.0 Wenchuan earthquake and three dimensional P-wave velocity structure in and around source region. Chinese Journal of Geophysics (in Chinese), 52(2): 320-328. http://www.cqvip.com/qk/94718X/200902/29656013.html

     

    Xin H L, Zhang H J, Kang M, et al. 2019. High-resolution lithospheric velocity structure of continental china by double-difference seismic travel-time tomography. Seismological Research Letters, 90(1): 229-241. doi: 10.1785/0220180209

     

    Xu X W, Chen W B, Ma W T, et al. 2002. Surface rupture of the Kunlunshan earthquake (MS8.1), northern Tibetan plateau, China. Seismological Research Letters, 73(6): 884-892. doi: 10.1785/gssrl.73.6.884

     

    Xu X W, Yu G H, Ma W T, et al. 2008a. Rupture behavior and deformation localization of the Kunlunshan earthquake (MW7.8) and their tectonic implications. Science in China Series D: Earth Sciences, 51(10): 1361-1374. doi: 10.1007/s11430-008-0099-z

     

    Xu X W, Wen X Z, Ye J Q, et al. 2008b. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure. Seismology and Geology (in Chinese), 30(3): 597-629.

     

    Xu X W, Tan X B, Yu G H, et al. 2013a. Normal-and oblique-slip of the 2008 Yutian earthquake: evidence for eastward block motion, northern Tibetan Plateau. Tectonophysics, 584: 152-165. doi: 10.1016/j.tecto.2012.08.007

     

    Xu X W, Wen X Z, Han Z J, et al. 2013b. Lushan MS7.0 earthquake: A blind reserve-fault event. Chinese Science Bulletin, 58(28-29): 3437-3443. doi: 10.1007/s11434-013-5999-4

     

    Xu X W, Han Z J, Yang X P, et al. 2016. Seismotectonic Atlas of China and Its Vicinity (in Chinese). Beijing: Seismological Press.

     

    Xu X W, Chen G H, Wang Q X, et al. 2017. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics (in Chinese), 60(10): 4018-4026, doi:10.6038/cjg20171028.

     

    Yang Y H, Fan J, Hua Q, et al. 2017. Inversion for the focal mechanisms of the 2017 Jiuzhaigou M7.0 earthquake sequence using near-field full waveforms. Chinese Journal of Geophysics (in Chinese), 60(10): 4098-4104, doi:10.6038/cjg20171034.

     

    Yi G X, Long F, Qiao M J, et al. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks, northern Sichuan. Chinese Journal of Geophysics (in Chinese), 60(10): 4083-4097, doi:10.6038/cjg20171033.

     

    Yi G X, Long F, Liang M J, et al. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence. Chinese Journal of Geophysics (in Chinese), 62(9): 3432-3447, doi:10.6038/cjg2019N0297.

     

    Zhan Y, Liang M J, Sun X Y, et al. 2021. Deep structure and seismogenic pattern of the 2021.5.22 Madoi(Qinghai) MS7.4 earthquake. Chinese Journal of Geophysics (in Chinese), 64(7): 2232-2252, doi:10.6038/cjg2021O0521.

     

    Zhang G M, Li X B, Zheng C, et al. 2019. Crustal and uppermost mantle velocity structure beneath the central-eastern Tibetan Plateau from P-wave tomography. Acta Seismologica Sinica (in Chinese), 41(4): 411-424. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXB201904001.htm

     

    Zhang G W, Lei J S. 2013. Relocations of Lushan, Sichuan strong earthquake (MS7.0) and its aftershocks. Chinese Journal of Geophysics (in Chinese), 56(5): 1764-1771, doi:10.6038/cjg20130534.

     

    Zhang G W, Lei J S, Sun C Q. 2014. Relocation of the 12 February 2014 Yutian, Xinjiang, mainshock (MS7.3) and its aftershock. Chinese Journal of Geophysics (in Chinese), 57(3): 1012-1020, doi:10.6038/cjg20140330.

     

    Zhang G W, Lei J S, Sun D Y. 2019. The 2013 and 2017 MS5 seismic swarms in Jilin, NE China: fluid-triggered earthquakes? Journal of Geophysical Research: Solid Earth, 124(12): 13096-13111. doi: 10.1029/2019JB018649

     

    Zhang P Z, Xu X W, Wen X Z, et al. 2008. Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China. Chinese Journal of Geophysics (in Chinese), 51(4): 1066-1073.

     

    Zhang Z, Xu L S. 2021. The centroid moment tensor solution of the 2021 MS7.5 Guoluo, Qinghai, earthquake. Acta Seismologica Sinica (in Chinese), 43(3): 1-5.

     

    Zheng Y, Ma H S, Lv J, et al. 2009. Source mechanism of strong aftershocks (MS ≥ 5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics. Science in China Series D: Earth Sciences, 52(6): 739-753. doi: 10.1007/s11430-009-0074-3

     

    Zheng Y, Ge C, Xie Z J, et al. 2013. Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake. Science China Earth Sciences, 56(7): 1158-1168. doi: 10.1007/s11430-013-4641-2

     

    邓起东, 高翔, 陈桂华等. 2010. 青藏高原昆仑-汶川地震系列与巴颜喀喇断块的最新活动. 地学前缘, 17(5): 163-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201005017.htm

     

    邓起东, 程绍平, 马骥等. 2014. 青藏高原地震活动特征及当前地震活动形势. 地球物理学报, 57(7): 2025-2042, doi:10.6038/cjg20140701. http://www.geophy.cn//CN/abstract/abstract10474.shtml

     

    范桃园, 陈群策, 吴中海等. 2013. 青藏高原东缘活动构造与现今地应力场三维粘弹性模拟研究. 地球物理学进展, 28(3): 1140-1149, doi:10.6038/pg20130305.

     

    房立华, 吴建平, 王未来等. 2013. 四川芦山MS7.0级地震及其余震序列重定位. 科学通报, 58(20): 1901-1909. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320004.htm

     

    房立华, 吴建平, 王未来等. 2015. 2014年新疆于田MS7.3级地震序列重定位. 地球物理学报, 58(3): 802-808, doi:10.6038/cjg20150310. http://www.geophy.cn//CN/abstract/abstract11353.shtml

     

    高翔, 邓起东. 2013. 巴颜喀喇断块边界断裂强震活动分析. 地质学报, 87(1): 9-19. doi: 10.3969/j.issn.0001-5717.2013.01.002

     

    嘉世旭, 林吉焱, 郭文斌等. 2017. 巴颜喀拉块体地壳结构多样性探测. 地球物理学报, 60(6): 2226-2238, doi:10.6038/cjg20170616. http://www.geophy.cn//CN/abstract/abstract13768.shtml

     

    雷建设, 赵大鹏, 苏金蓉等. 2009. 龙门山断裂带地壳精细结构与汶川地震发震机理. 地球物理学报, 52(2): 339-345. http://www.geophy.cn//CN/abstract/abstract913.shtml

     

    李志伟, 胥颐, 黄润秋等. 2011. 龙门山地区的P波速度结构与汶川地震的深部构造特征. 中国科学: 地球科学, 41(3): 283-290. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103001.htm

     

    梁明剑, 杨耀, 杜方等. 2020. 青海达日断裂中段晚第四纪活动性与1947年M73/4地震地表破裂带再研究. 地震地质, 42(3): 703-714. doi: 10.3969/j.issn.0253-4967.2020.03.011

     

    梁姗姗, 雷建设, 徐志国等. 2018. 2017年四川九寨沟MS7.0强震的余震重定位及主震震源机制反演. 地球物理学报, 61(5): 2163-2175, doi:10.6038/cjg2018L0508. http://www.geophy.cn//CN/abstract/abstract14520.shtml

     

    刘杰, 易桂喜, 张致伟等. 2013. 2013年4月20日四川芦山M7.0级地震介绍. 地球物理学报, 56(4): 1404-1407, doi:10.6038/cjg20130434. http://www.geophy.cn//CN/abstract/abstract9454.shtml

     

    刘雷, 李玉江, 朱良玉等. 2021. 1947年达日M7.7地震对巴颜喀拉块体边界断裂应力影响的数值模拟. 地球物理学报, 64(7): 2221-2231, doi:10.6038/cjg2021P0194. http://www.geophy.cn//CN/abstract/abstract15911.shtml

     

    盛书中, 万永革, 王未来等. 2014. 2010年玉树MS7.1地震发震断层面参数的确定. 地球物理学进展, 29(4): 1555-1562, doi:10.6038/pg20140409.

     

    孙鑫喆, 徐锡伟, 陈立春等. 2012. 2010年玉树地震地表破裂带典型破裂样式及其构造意义. 地球物理学报, 55(1): 155-170, doi:10.6038/j.issn.0001-5733.2012.01.015. http://www.geophy.cn//CN/abstract/abstract8389.shtml

     

    万永革, 沈正康, 刁桂苓等. 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用. 地球物理学报, 51(3): 793-804, doi:10.3321/j.issn:0001-5733.2008.03.020. http://www.geophy.cn//CN/abstract/abstract403.shtml

     

    万永革, 沈正康, 盛书中等. 2009. 2008年汶川大地震对周围断层的影响. 地震学报, 31(2): 128-139. doi: 10.3321/j.issn:0253-3782.2009.02.002

     

    王椿镛, 楼海, 吕智勇等. 2008. 青藏高原东部地壳上地幔S波速度结构——下地壳流的深部环境. 中国科学D辑: 地球科学, 38(1): 22-32. doi: 10.3321/j.issn:1006-9267.2008.01.003

     

    王未来, 吴建平, 房立华等. 2012. 2010年玉树MS7.1地震及其余震的双差定位研究. 中国科学: 地球科学, 42(7): 1037-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201207011.htm

     

    魏柏林. 1980. 余震震源机制变化的原因. 地球物理学报, 23(1): 25-34. doi: 10.3321/j.issn:0001-5733.1980.01.004 http://www.geophy.cn//CN/abstract/abstract5314.shtml

     

    闻学泽. 2018. 巴颜喀拉块体东边界千年破裂历史与2008年汶川、2013年芦山和2017年九寨沟地震. 地震学报, 40(3): 255-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201803002.htm

     

    吴建平, 黄媛, 张天中等. 2009. 汶川MS8.0级地震余震分布及周边区域P波三维速度结构研究. 地球物理学报, 52(2): 320-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902004.htm

     

    徐锡伟, 于贵华, 马文涛等. 2008a. 昆仑山地震(MW7.8)破裂行为、变形局部化特征及其构造内涵讨论. 中国科学D辑: 地球科学, 38(7): 785-796. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200807001.htm

     

    徐锡伟, 闻学泽, 叶建青等. 2008b. 汶川MS8.0地震地表破裂带及其发震构造. 地震地质, 30(3): 597-629. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200803003.htm

     

    徐锡伟, 韩竹军, 杨小平等. 2016. 中国及邻近地区地震构造图. 北京: 地震出版社.

     

    徐锡伟, 陈桂华, 王启欣等. 2017. 九寨沟地震发震断层属性及青藏高原东南缘现今应变状态讨论. 地球物理学报, 60(10): 4018-4026, doi:10.6038/cjg20171028. http://www.geophy.cn//CN/abstract/abstract14065.shtml

     

    杨宜海, 范军, 花茜等. 2017. 近震全波形反演2017年九寨沟M7.0地震序列震源机制解. 地球物理学报, 60(10): 4098-4104, doi:10.6038/cjg20171034. http://www.geophy.cn//CN/abstract/abstract14071.shtml

     

    易桂喜, 龙锋, 梁明剑等. 2017. 2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析. 地球物理学报, 60(10): 4083-4097, doi:10.6038/cjg20171033. http://www.geophy.cn//CN/abstract/abstract14070.shtml

     

    易桂喜, 龙锋, 梁明剑等. 2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析. 地球物理学报, 62(9): 3432-3447, doi:10.6038/cjg2019N0297.

     

    詹艳, 梁明剑, 孙翔宇等. 2021. 2021年5月22日青海玛多MS7.4地震深部环境及发震构造模式. 地球物理学报, 64(7): 2232-2252, doi:10.6038/cjg2021O0521. http://www.geophy.cn//CN/abstract/abstract15912.shtml

     

    张戈铭, 李细兵, 郑晨等. 2019. 青藏高原中东部地壳和上地幔顶部P波层析成像. 地震学报, 41(4): 411-424. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201904001.htm

     

    张广伟, 雷建设. 2013. 四川芦山7.0级强震及其余震序列重定位. 地球物理学报, 56(5): 1764-1771, doi:10.6038/cjg20130534. http://www.geophy.cn//CN/abstract/abstract9494.shtml

     

    张广伟, 雷建设, 孙长青. 2014. 2014年2月12日新疆于田MS7.3级地震主震及余震序列重定位研究. 地球物理学报, 57(3): 1012-1020, doi:10.6038/cjg20140330. http://www.geophy.cn//CN/abstract/abstract10229.shtml

     

    张培震, 徐锡伟, 闻学泽等. 2008. 2008年汶川8.0级地震发震断裂的滑动速率, 复发周期和构造成因. 地球物理学报, 51(4): 1066-1073. doi: 10.3321/j.issn:0001-5733.2008.04.015 http://www.geophy.cn//CN/abstract/abstract415.shtml

     

    张喆, 许立生. 2021. 2021年青海果洛MW7.5地震矩心矩张量解. 地震学报, 43(3): 1-5.

     

    郑勇, 马宏生, 吕坚等. 2009. 汶川地震强余震(MS ≥ 5.6)的震源机制解及其与发震构造的关系. 中国科学D辑: 地球科学, 39(4): 413-426. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200904004.htm

     

    郑勇, 葛粲, 谢祖军等. 2013. 芦山与汶川地震震区地壳上地幔结构及深部孕震环境. 中国科学: 地球科学, 43(6): 1027-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306011.htm

  • 加载中

(9)

(1)

计量
  • 文章访问数:  4857
  • PDF下载数:  635
  • 施引文献:  0
出版历程
收稿日期:  2021-06-08
修回日期:  2021-07-06
上线日期:  2021-08-10

目录