Biopolym. Cell. 2010; 26(3):175-186.
Reviews
Molecular and genetics approaches for investigation of phospholipase D role in plant cells
1Kravets V. S., 1Kolesnikov Ya. S., 1Kretynin S. V., 2Kabachevskaya E. M., 2Liahnovitch G. V., 1Bondarenko O. M., 2Volotovsky I. D., 1Kukhar V. P.
  1. Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
    1, Murmans'ka Str., Kyiv, Ukraine, 02094
  2. Institute of Biophysics and Cell Engineering, NAS of Belarus
    27 Akademicheskaya Str., Minsk BY-220072, Republic of Belarus

Abstract

The review is devoted to the analysis of publications concerning the role of phospholipase D (PLD) in regulation of metabolism in plant cells. Analysis of molecular and genetic studies suggest that PLD is an important component of various hormonal and stress signaling pathways.
Keywords: phospholipase D, phosphatidic acid, transgenic plants

References

[1] Pappan K., Austin-Brown S., Chapman K. D., Wang X. Substrate selectives and lipid modulation of plant phospholipase Da, -, and Arch. Biochem. Biophys 1998 353, N 1 P. 131–140.
[2] Oblozinsky M., Ulbrich-Hofmann R., Bezakova L. Head group specificity of phospholipase D isoenzymes from poppy seedlings (Papaver somniferum L.) Biotechnol. Lett 2005 27, N 3:181–185.
[3] Elias M., Potocky M., Cyrckova F., Zarsky V. V. Molecular diversity of phospholipase D in angiosperms BMC Genomics 2002 3, N 1:2.
[4] Li G., Lin F., Xue H.-W. Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLDb1 in seed germination Cell Res 2007 17, N 10:881–894.
[5] Hanahan D. J., Chaikoff I. L. A new phospholipid-splitting enzyme specific for the ester linkage between the nitrogenous base and the phosphoric acid grouping.. J. Biol. Chem 1947; 169, N 1:699–705.
[6] Liscovitch M., Czarny M., Flucci G., Tang X. Phospholipase D: molecular and cell biology of a novel gene family Biochem. J 2000 345, N 3:401–415.
[7] Wang X., Devaiah S.P., Zhang W., Welti R. Signaling functions of phosphatidic acid Progr. Lipid Res 2006 45, N 3:250–278.
[8] Wang X. Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses Plant Physiol 2005 139, N 2:566–573.
[9] Bargmann B. O., Munnik T. The role of phospholipase D in plant stress responses Curr. Opin. Plant Biol 2006 9, N 5:515–522.
[10] Romanov G. A. How do cytokinins affect the cell? Rus. J. Plant Physiol 2009 56:268–290.
[11] Romanov G. A., Kieber J. J., Schmelling T. A rapid cytokinin response assay in Arabidopsis indicates a role for phospholipase D in cytokinin signaling FEBS Lett 2002 515, N 1–3:39–43.
[12] Kravets V. S., Kretinin S. V., Kolesnikov Ya. S., Getman I. A., Romanov G. A. Cytokinins evoke rapid activation of phospholipase D insensitive plant tissues. Dokl. Biokhim. Biophys. 2009; 28, N 5 P. 1–4.
[13] Kravets V. S., Kolesnikov Ya. S., Kretynin S. V., Getman I. A., Romanov G. A. Rapid activation of specific phospholipase(s) D by cytokinin in Amaranthus assay system Physiol. Plantar 2010 138:249–255. 10.1111/j.1399-3054.2009.01324.x
[14] Amini A., Glevarec G., Andreu F., Reverdiau P., Rideau M., Creche J. Effects of phosphatidic acid on cytokinin signal transduction in periwinkle cells J. Plant Growth Regul 2008 27, N 4:394–399.
[15] Tarasova O. V., Medvedev S. S. Influence of benzylamino-. purine on fatty acid composition and ratio of phospholipids from maize coleoptiles and roots. Vestn. S.-Petersb. Univ. 2008; 3, N 2:85–90.
[16] Zhang W., Qin C., Zhao J., Wang X. Phospholipids Da1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling Proc. Nat. Acad. Sci. USA 2004 101, N 25:9508–9513.
[17] Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., Wang L., Welti R., Zhang W., Wang X. Phospholipase D1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis Plant Cell 2009 21, N 8 P. 2357–2377.
[18] Mishra G., Zhang W., Deng F., Zhao J., Wang X. A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 2006 312, N 5771:264–266.
[19] Lein W., Saalbach G. Cloning and direct G-protein regulation of phospholipase D from tobacco Biochim. Biophys. Acta 2001 1530, N 2–3:172–183.
[20] Zhao J., Wang X. Arabidopsis phospholipase D1 interacts with the heterotrimeric G-protein a-subunut through a motif analogous to the DRY motif in G-protein-coupled receptors J. Biol. Chem 2004 279, N 3:1794–1800.
[21] Mahajan A., Sharma S. Antagonistic effect of polyamines on ABA-induced suppression of mitosis in Allium cera L. Ind. J. Exp. Biol. 2009; 47, N 2:136–139.
[22] Liu P. F., Chang W. C., Wang Y. K., Chang H. Y., Pan R. L. Signaling pathways mediating the suppression of Arabidopsis thaliana Ku gene expression by abscisic acid Biochim. Biophys. Acta 2008 1779, N 3:164–174.
[23] Fan L., Zheng S., Wang X. Antisense suppression of phospholipase Da retards abscisic acidand ethylenepromoted senescence of postharvest Arabidopsis leaves Plant Cell 1997 9, N 12:2183–2196.
[24] Chen H., Xue L., Chintamanani S., Germain H., Lin H., Cui H., Cai R., Zuo J., Tang X., Li X., Guo H., Zhou J. M. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis The Plant Cell 2009 21, N 8 P. 2527–2540.
[25] Bapat V. A., Trivedi P. K., Ghosh A., Sane V. A., Ganapathi T. R., Nath P. Ripening of fleshy fruit: molecular insight and the role of ethylene Biotechnol. Adv 2010 28, N 1:94–107.
[26] Pinhero R. G., Almquist K. C., Novotna Z., Raliyath G. Developmental regulation of phospholipase D in tomato fruits Plant Physiol. Biochem 2003 41, N 3:223–240.
[27] Woodward A. W., Bartel B. Auxin: regulation, action, and interaction Ann. Bot. (Lond.) 2005 95, N 1:707–735.
[28] Li G., Xue H.-W. Arabidopsis PLDz2 regulates vesicle trafficking and is required for auxin response The Plant Cell 2007 19, N 1:281–295.
[29] Abas L., Benjamins R., Malenica N., Paciorek T., Wisniewska J., Jeanette C., Moulinier-Anzola J. C., Sieberer T., Friml J., Luschnig C. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism Nat. Cell Biol 2006 8, N 3:249–256.
[30] Mancuso S., Marras A., Muguai S., Schlicht M., Zarsky V., Li G., Song L., Xue H. W., Baluska F. Phospholipase Dz2 drives vesicular secretion of auxin for its polar cell-cell transport in the transition zone of the root apex Plant Signal. and Behavior 2007 2, N 4:240–244.
[31] Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction Annu. Rev. Plant Biol 2004 55:373–399.
[32] Sang Y., Cui D., Wang X. Phospholipase D and phosphatidic acid mediated generation of superoxide in Arabidopsis Plant Physiol 2001 126, N 4:1449–1458.
[33] Zhang W., Wang C., Qin C., Wood T., Olafsdottir G., Welti R., Wang X. The oleate-stimulated phospholipase D, PLD, and phosphatidic acid decrease H2O2-inducrd cell death in Arabidopsis Plant Cell 2003 15, N 10:2285– 2295.
[34] Wang C., Zien C. A., Afitlhill M., Welti R., Hildebrand D. F., Wang X. Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis Plant Cell 2000 12, N 11:2237–2246.
[35] Bargmann B. O., Lazalt A. M., Riet B., Testerink C., Merquiol E., Mosblech A., Reyes A. L., Pieterse C. M., Haring M. A., Heilmann I., Bartels D., Munnik T. Reassessing the role of phospholipase D in the Arabidopsis wounding response Plant Cell Environ 2009 32, N 7:837–850.
[36] Nimchuk Z., Eulgem T., Holt B. F., Dangl J. L. Recognition and response in the plant immune system Annu. Rev. Genet 2003 37:579–609.
[37] Bargmann B. O. R., Laxalt A. M., ter Riet B., Schouten E., van Leeuwen W., Dekker H. L., de Koster C. G., Haring M. A., Munnik T. LePLD1 activation and relocalization in suspension-cultured tomato cells treated with xylanase The Plant J 2006 45, N 3:358–368.
[38] Yamaguchi T., Kuroda M., Yamakawa H., Ashizawa T., Hirayae K., Kurimoto L., Shinya T., Shibuya N. Suppression of a phospholipase D gene, OsPLD1, activates defense responses and increases disease resistance in rice Plant Physiol 2009 150, N 1:308–319.
[39] Welti R., Li W., Li M., Sang Y., Biesiada H., Zhou H.-E., Rajashekar C. B., Williams T. D., Wang X. Profiling membrane lipids in plant stress responses. Role of phospholipase D in freezing-induced lipid changes in Arabidopsis J. Biol. Chem 2002 277, N 35:31994–32002.
[40] Li W., Li M., Zhang W., Welti R., Wang X. The plasma membrane-bound phospholipase Dd enhances freezing tolerance in Arabidopsis thaliana Nat. Biotechnol 2004 22, N 4 P. 427–433.
[41] Katagiri T., Takahashi S., Shonizaki K. Involvement of a novel Arabidopsis phospholipase D, AtPLD, in dehydratation-inducible accumulation of phosphatidic acid in stress signaling Plant J 2001 26, N 6:595–605.
[42] Li W., Wang R., Li M., Li L., Wang C., Welti R., Wang X. Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana J. Biol. Chem 2008 283, N 1:461–468.
[43] Rajashekar C. B., Zhoua H.-E., Zhanga Y., Li W., Wang X. Suppression of phospholipase D1 induces freezing tolerance in Arabidopsis: Response of cold-responsive genes and osmolyte accumulation J. Plant Physiol 2006 163, N 9 P. 916–926.
[44] Mishkind M., Vermeer J. E. M., Darwish E., Munnik T. Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus The Plant J 2009 60, N 1:10–21.
[45] Mane S. P., Vasquez-Robinet C., Sioson A. A., Heath L. S., Grene R. Early PLD-mediated events in response to progressive drought stress in Arabidopsis: a transcriptome analysis J. Exp. Bot 2007 58, N 2:241–252.
[46] Hong Y., Zheng S., Wang X. Dual functions of phospholipase D1 in plant response to drought Mol. Plant 2008 1, N 2:262–269.
[47] Hong Y., Pan X., Welti R., Wang X. Phospholipase D3 is involved in the hyperosmotic response in Arabidopsis Plant Cell 2008 20, N 3:803–816.
[48] Taniguchi Y. Y., Taniguchi M., Tsuge T., Oka A., Aoyama T. Involvement of Arabidopsis thaliana phospholipase D2 in root hydrotropism through the suppression of root gravitropism Planta 2010 231, N 2:491–497.
[49] Bargmann B. O. R., Laxalt A. M., ter Riet B., van Schooten B., Merquiol E., Testerink C., Haring M.A., Bartels D., Munnik T. Multiple PLDs required for high salinity and water deficit tolerance in plants Plant Cell Physiol 2009 50, N 1 P. 78–89.
[50] Hong Y., Devaiah D. P., Thamasandra B. N., Bahn S. C., Li M., Welti R., Wang X. Phospholipase D and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth Plant J 2009 58, N 3:376–387.
[51] Schmid K. M., Ohlrogge J. B. Chapter 4. Lipid metabolism in plants. New Compr. Biochem 2002 36, N 1:93–126.
[52] Devaiah S. P., Pan X., Hong Y., Roth M., Welti R., Wang X. Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis Plant J 2007 50, N 6 P. 950–957.
[53] Devaiah S. P., Roth M. R., Baughman E., Li M., Tamura P., Jeannotte R., Welti R., Wang X. Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE D1 knockout mutant Phytochemistry 2006 67, N 17:1907–1924.
[54] Ohashi Y., Oka A., Rodrigues-Pousada R., Possenti M., Ruberti I., Morelli G., Aoyama T. Modulation of phospholipids signaling by GLABRA in root-hair pattern formation Science 2003 300, N 5624:1427–1430.
[55] Li M., Qin C., Welti R., Wang X. Double knockouts of phospholipase D1 and 2 in Arabidopsis affect root elongation during phosphate-limited growth, but do not affect root hair patterning Plant Physiol 2006 140, N 2:761–770.
[56] Cruz-Ramirez A., Oropeza-Aburto A., Razo-Hernandez F., Ramirez-Chavez E., Herrera-Estrella L. Phospholipase D2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots Proc. Nat. Acad. Sci. USA 2006 103, N 17:6765–6770.
[57] Bouvier-Nave P., Berna A., Noiriel A., Compagnon V., Carlsson A.S., Banas A., Stymne S., Schaller H. Involvement of the phospholipid sterol acyltransferase1 in plant sterol homeostasis and leaf senescence Plant Physiol 2010 152, N 1 P. 107–119.
[58] Ikegami K., Okamoto M., Seo M., Koshiba T. Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit J. Plant Res 2009 122, N 2:235–243.
[59] Hershkovitz V., Friedman H., Goldschmidt E. E., Feygenberg O., Pesis E. Induction of ethylene in avocado fruit in response to chilling stress on tree J. Plant Physiol 2009 166, N 17:1852–1855.
[60] Yuan H., Chen L., Paliyath G., Sullivan A., Murr D. P. Characterization of microsomal and mitochondrial phospholipase D activities and cloning of a phospholipase D alpha cDNA from strawberry fruits Plant Physiol. and Biochem 2005 43, N 6:535–547.