DOI QR코드

DOI QR Code

Microchips and their Significance in Isolation of Circulating Tumor Cells and Monitoring of Cancers

  • Sahmani, Mehdi (Department of Clinical Biochemistry, Cellular and Molecular Research Center, Qazvin University of Medical Sciences) ;
  • Vatanmakanian, Mousa (Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences) ;
  • Goudarzi, Mehdi (Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Science) ;
  • Mobarra, Naser (Stem cell Research Center, Department of Biochemistry, School of Medicine, Golestan University of Medical Sciences) ;
  • Azad, Mehdi (Department of Medical laboratory sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences)
  • Published : 2016.04.11

Abstract

In micro-fluid systems, fluids are injected into extremely narrow polymer channels in small amounts such as micro-, nano-, or pico-liter scales. These channels themselves are embedded on tiny chips. Various specialized structures in the chips including pumps, valves, and channels allow the chips to accept different types of fluids to be entered the channel and along with flowing through the channels, exert their effects in the framework of different reactions. The chips are generally crystal, silicon, or elastomer in texture. These highly organized structures are equipped with discharging channels through which products as well as wastes of the reactions are secreted out. A particular advantage regarding the use of fluids in micro-scales over macro-scales lies in the fact that these fluids are much better processed in the chips when they applied as micro-scales. When the laboratory is miniaturized as a microchip and solutions are injected on a micro-scale, this combination makes a specialized construction referred to as "lab-on-chip". Taken together, micro-fluids are among the novel technologies which further than declining the costs; enhancing the test repeatability, sensitivity, accuracy, and speed; are emerged as widespread technology in laboratory diagnosis. They can be utilized for monitoring a wide spectrum of biological disorders including different types of cancers. When these microchips are used for cancer monitoring, circulatory tumor cells play a fundamental role.

Keywords

References

  1. Aitman TJ (2001). DNA microarrays in medical practice. BMJ, 323, 611-5. https://doi.org/10.1136/bmj.323.7313.611
  2. Alexis F, Rhee JW, Richie JP, et al (2008). New frontiers in nanotechnology for cancer treatment. Urol Oncol, 26, 74-85. https://doi.org/10.1016/j.urolonc.2007.03.017
  3. Alizadeh AA, Eisen MB, Davis RE, et al (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 503-11. https://doi.org/10.1038/35000501
  4. Allan AL, Keeney M (2010). Circulating tumor cell analysis: technical and statistical considerations for application to the clinic. J Oncol, 2010, 426218.
  5. Allen-Mersh TG, McCullough TK, Patel H, et al (2007). Role of circulating tumour cells in predicting recurrence after excision of primary colorectal carcinoma. Br J Surg, 94, 96-105. https://doi.org/10.1002/bjs.5526
  6. Azad M, Bakhshi Biniaz R, Goudarzi M, et al (2015). Short view of leukemia diagnosis and treatment in iran. Int J Hematol Oncol Stem Cell Res, 9, 88-94.
  7. Backhouse CJ, Crabtree HJ, Glerum DM (2002). Frontal analysis on a microchip. Analyst, 127, 1169-75. https://doi.org/10.1039/b203515d
  8. Bean P (2001). Biochips 2001: the second-generation chip for the clinic. Am Clin Lab, 20, 11-2.
  9. Bhagat AA, Hou HW, Li LD, et al (2011). Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip, 11, 1870-8. https://doi.org/10.1039/c0lc00633e
  10. Brivio M, Verboom W, Reinhoudt DN (2006). Miniaturized continuous flow reaction vessels: influence on chemical reactions. Lab Chip, 6, 329-44. https://doi.org/10.1039/b510856j
  11. Brouzes E, Medkova M, Savenelli N, et al (2009). Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A, 106, 14195-200. https://doi.org/10.1073/pnas.0903542106
  12. Bunger S, Zimmermann M, Habermann JK (2015). Diversity of assessing circulating tumor cells (CTCs) emphasizes need for standardization: a CTC Guide to design and report trials. Cancer Metastasis Rev, 34, 527-45. https://doi.org/10.1007/s10555-015-9582-0
  13. Chen CL, Chen KC, Pan YC, et al (2011a). Separation and detection of rare cells in a microfluidic disk via negative selection. Lab Chip, 11, 474-83. https://doi.org/10.1039/C0LC00332H
  14. Chen KC, Lee TP, Pan YC, et al (2011b). Detection of circulating endothelial cells via a microfluidic disk. Clin Chem, 57, 586-92. https://doi.org/10.1373/clinchem.2010.157404
  15. Chiu TK, Lei KF, Hsieh CH, et al (2015). Development of a microfluidic-based optical sensing device for label-free detection of circulating tumor cells (CTCs) through their lactic acid metabolism. Sensors (Basel), 15, 6789-806. https://doi.org/10.3390/s150306789
  16. Chuang WC, Lee HL, Chang PZ, et al (2010). Review on the modeling of electrostatic MEMS. Sensors (Basel), 10, 6149-71. https://doi.org/10.3390/s100606149
  17. Cibilic D (2000). Microchip action. Aust Vet J, 78, 598.
  18. de Bono JS, Attard G, Adjei A, et al (2007). Potential applications for circulating tumor cells expressing the insulin-like growth factor-I receptor. Clin Cancer Res, 13, 3611-6. https://doi.org/10.1158/1078-0432.CCR-07-0268
  19. den Toonder J (2011). Circulating tumor cells: the Grand Challenge. Lab Chip, 11, 375-7. https://doi.org/10.1039/c0lc90100h
  20. DeRisi J, Penland L, Brown PO, et al (1996). Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet, 14, 457-60. https://doi.org/10.1038/ng1296-457
  21. Dharmasiri U, Balamurugan S, Adams AA, et al (2009). Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device. Electrophoresis, 30, 3289-300. https://doi.org/10.1002/elps.200900141
  22. Dharmasiri U, Njoroge SK, Witek MA, et al (2011). High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal Chem, 83, 2301-9. https://doi.org/10.1021/ac103172y
  23. Di Carlo D, Wu LY, Lee LP (2006). Dynamic single cell culture array. Lab Chip, 6, 1445-9. https://doi.org/10.1039/b605937f
  24. Dingwall R (1979). Are you ready for the microchip? Nurs Times, 75, 975-6.
  25. Emmert-Buck MR, Bonner RF, Smith PD, et al (1996). Laser capture microdissection. Science, 274, 998-1001. https://doi.org/10.1126/science.274.5289.998
  26. Fabian TK, Fejerdy P, Csermely P (2008). Salivary Genomics, Transcriptomics and Proteomics: The Emerging Concept of the Oral Ecosystem and their Use in the Early Diagnosis of Cancer and other Diseases. Curr Genomics, 9, 11-21. https://doi.org/10.2174/138920208783884900
  27. Fey MF (2002). The impact of chip technology on cancer medicine. Ann Oncol, 13, 109-13.
  28. Figeys D, Pinto D (2000). Lab-on-a-chip: a revolution in biological and medical sciences. Anal Chem, 72, 330A-5A.
  29. Gleghorn JP, Pratt ED, Denning D, et al (2010). Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip, 10, 27-9. https://doi.org/10.1039/B917959C
  30. Gomez-Sjoberg R, Leyrat AA, Pirone DM, et al (2007). Versatile, fully automated, microfluidic cell culture system. Anal Chem, 79, 8557-63. https://doi.org/10.1021/ac071311w
  31. Goodale D, Phay C, Postenka CO, et al (2009). Characterization of tumor cell dissemination patterns in preclinical models of cancer metastasis using flow cytometry and laser scanning cytometry. Cytometry A, 75, 344-55.
  32. Gross A, Schoendube J, Zimmermann S, et al (2015). Technologies for Single-Cell Isolation. Int J Mol Sci, 16, 16897-919. https://doi.org/10.3390/ijms160816897
  33. Guzman NA, Phillips TM (2011). Immunoaffinity capillary electrophoresis: a new versatile tool for determining protein biomarkers in inflammatory processes. Electrophoresis, 32, 1565-78.
  34. Helo P, Cronin AM, Danila DC, et al (2009). Circulating prostate tumor cells detected by reverse transcription-PCR in men with localized or castration-refractory prostate cancer: concordance with CellSearch assay and association with bone metastases and with survival. Clin Chem, 55, 765-73. https://doi.org/10.1373/clinchem.2008.117952
  35. Holden C (1989). Engineers' nobel to microchip pioneers. Science, 246, 214.
  36. Hosokawa M, Hayata T, Fukuda Y, et al (2010). Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Anal Chem, 82, 6629-35. https://doi.org/10.1021/ac101222x
  37. Huang F, Adelman J, Jiang H, et al (1999). Identification and temporal expression pattern of genes modulated during irreversible growth arrest and terminal differentiation in human melanoma cells. Oncogene, 18, 3546-52. https://doi.org/10.1038/sj.onc.1202715
  38. Hung LY, Chuang YH, Kuo HT, et al (2013). An integrated microfluidic platform for rapid tumor cell isolation, counting and molecular diagnosis. Biomed Microdevices, 15, 339-52. https://doi.org/10.1007/s10544-013-9739-y
  39. Hur SC, Henderson-MacLennan NK, McCabe ER, et al (2011). Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip, 11, 912-20. https://doi.org/10.1039/c0lc00595a
  40. Kang JH, Krause S, Tobin H, et al (2012). A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip, 12, 2175-81. https://doi.org/10.1039/c2lc40072c
  41. Kanwar SS, Dunlay CJ, Simeone DM, et al (2014). Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip, 14, 1891-900. https://doi.org/10.1039/c4lc00136b
  42. Kartalov EP, Zhong JF, Scherer A, et al (2006). High-throughput multi-antigen microfluidic fluorescence immunoassays. Biotechniques, 40, 85-90. https://doi.org/10.2144/000112071
  43. Kim H, Lee S, Lee JH, et al (2015). Integration of a microfluidic chip with a size-based cell bandpass filter for reliable isolation of single cells. Lab Chip, 15, 4128-32. https://doi.org/10.1039/C5LC00904A
  44. Kim YJ, Koo GB, Lee JY, et al (2014). A microchip filter device incorporating slit arrays and 3-D flow for detection of circulating tumor cells using CAV1-EpCAM conjugated microbeads. Biomaterials, 35, 7501-10. https://doi.org/10.1016/j.biomaterials.2014.05.039
  45. Kuo JS, Chiu DT (2011). Disposable microfluidic substrates: transitioning from the research laboratory into the clinic. Lab Chip, 11, 2656-65. https://doi.org/10.1039/c1lc20125e
  46. Kuo JS, Zhao Y, Schiro PG, et al (2010). Deformability considerations in filtration of biological cells. Lab Chip, 10, 837-42. https://doi.org/10.1039/b922301k
  47. Li Y, Zheng Q, Bao C, et al (2015). Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res, 25, 981-4. https://doi.org/10.1038/cr.2015.82
  48. Lianidou ES, Markou A, Strati A (2015). The Role of CTCs as Tumor Biomarkers. Adv Exp Med Biol, 867, 341-67. https://doi.org/10.1007/978-94-017-7215-0_21
  49. Liu RH, Yang J, Lenigk R, et al (2004). Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem, 76, 1824-31. https://doi.org/10.1021/ac0353029
  50. Mach AJ, Adeyiga OB, Di Carlo D (2013). Microfluidic sample preparation for diagnostic cytopathology. Lab Chip, 13, 1011-26. https://doi.org/10.1039/c2lc41104k
  51. Maheswaran S, Haber DA (2010). Circulating tumor cells: a window into cancer biology and metastasis. Curr Opin Genet Dev, 20, 96-9. https://doi.org/10.1016/j.gde.2009.12.002
  52. Maheswaran S, Sequist LV, Nagrath S, et al (2008). Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med, 359, 366-77. https://doi.org/10.1056/NEJMoa0800668
  53. Mair DA, Geiger E, Pisano AP, et al (2006). Injection molded microfluidic chips featuring integrated interconnects. Lab Chip, 6, 1346-54. https://doi.org/10.1039/B605911B
  54. Marques MP, Fernandes P (2011). Microfluidic devices: useful tools for bioprocess intensification. Molecules, 16, 8368-401. https://doi.org/10.3390/molecules16108368
  55. Meng S, Tripathy D, Shete S, et al (2004). HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci U S A, 101, 9393-8. https://doi.org/10.1073/pnas.0402993101
  56. Meng S, Tripathy D, Shete S, et al (2006). uPAR and HER-2 gene status in individual breast cancer cells from blood and tissues. Proc Natl Acad Sci U S A, 103, 17361-5. https://doi.org/10.1073/pnas.0608113103
  57. Minhas H (2015). Developing the Lab on a Chip-microTAS community. Lab Chip, 15, 15-6. https://doi.org/10.1039/C4LC90120G
  58. Moon HS, Kwon K, Kim SI, et al (2011). Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip, 11, 1118-25. https://doi.org/10.1039/c0lc00345j
  59. Mrksich M, Whitesides GM (1996). Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu Rev Biophys Biomol Struct, 25, 55-78. https://doi.org/10.1146/annurev.bb.25.060196.000415
  60. Muluneh M, Issadore D (2014). Microchip-based detection of magnetically labeled cancer biomarkers. Adv Drug Deliv Rev, 66, 101-9. https://doi.org/10.1016/j.addr.2013.09.013
  61. Munro NJ, Snow K, Kant JA, et al (1999). Molecular diagnostics on microfabricated electrophoretic devices: from slab gel- to capillary- to microchip-based assays for T- and B-cell lymphoproliferative disorders. Clin Chem, 45, 1906-17.
  62. Myung JH, Launiere CA, Eddington DT, et al (2010). Enhanced tumor cell isolation by a biomimetic combination of E-selectin and anti-EpCAM: implications for the effective separation of circulating tumor cells (CTCs). Langmuir, 26, 8589-96. https://doi.org/10.1021/la904678p
  63. Nagrath S, Sequist LV, Maheswaran S, et al (2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450, 1235-9. https://doi.org/10.1038/nature06385
  64. Nandi P, Lunte SM (2009). Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal Chim Acta, 651, 1-14. https://doi.org/10.1016/j.aca.2009.07.064
  65. Ng AH, Wheeler AR (2015). Next-generation microfluidic point-of-care diagnostics. Clin Chem, 61, 1233-4. https://doi.org/10.1373/clinchem.2015.240226
  66. Nge PN, Rogers CI, Woolley AT (2013). Advances in microfluidic materials, functions, integration, and applications. Chem Rev, 113, 2550-83. https://doi.org/10.1021/cr300337x
  67. Nind F (1999). Microchip identification. Vet Rec, 145, 532.
  68. Pantel K, Brakenhoff RH, Brandt B (2008). Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer, 8, 329-40. https://doi.org/10.1038/nrc2375
  69. Pappalardo PA, Bonner R, Krizman DB, et al (1998). Microdissection, microchip arrays, and molecular analysis of tumor cells (primary and metastases). Semin Radiat Oncol, 8, 217-23. https://doi.org/10.1016/S1053-4296(98)80047-7
  70. Payne RE, Yague E, Slade MJ, et al (2009). Measurements of EGFR expression on circulating tumor cells are reproducible over time in metastatic breast cancer patients. Pharmacogenomics, 10, 51-7. https://doi.org/10.2217/14622416.10.1.51
  71. Ratajczak J, Wysoczynski M, Hayek F, et al (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 20, 1487-95. https://doi.org/10.1038/sj.leu.2404296
  72. Reyes DR, Iossifidis D, Auroux PA, et al (2002). Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem, 74, 2623-36. https://doi.org/10.1021/ac0202435
  73. Saliba AE, Saias L, Psychari E, et al (2010). Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad Sci U S A, 107, 14524-9. https://doi.org/10.1073/pnas.1001515107
  74. Sato K, Tokeshi M, Kimura H, et al (2001). Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoassay in a microchip for cancer diagnosis. Anal Chem, 73, 1213-8. https://doi.org/10.1021/ac000991z
  75. Sato K, Yamanaka M, Takahashi H, et al (2002). Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-gamma. Electrophoresis, 23, 734-9. https://doi.org/10.1002/1522-2683(200203)23:5<734::AID-ELPS734>3.0.CO;2-W
  76. Seemann R, Brinkmann M, Pfohl T, et al (2012). Droplet based microfluidics. Rep Prog Phys, 75, 016601. https://doi.org/10.1088/0034-4885/75/1/016601
  77. Seigneuric R, Markey L, Nuyten DS, et al (2010). From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med, 10, 640-52. https://doi.org/10.2174/156652410792630634
  78. Sheng W, Ogunwobi OO, Chen T, et al (2014). Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip, 14, 89-98. https://doi.org/10.1039/C3LC51017D
  79. Sin ML, Gao J, Liao JC, et al (2011). System Integration - A Major Step toward Lab on a Chip. J Biol Eng, 5, 6. https://doi.org/10.1186/1754-1611-5-6
  80. Smith RJ (1984). Pentagon hit by new microchip troubles. Science, 226, 953.
  81. Stathopoulou A, Gizi A, Perraki M, et al (2003). Real-time quantification of CK-19 mRNA-positive cells in peripheral blood of breast cancer patients using the lightcycler system. Clin Cancer Res, 9, 5145-51.
  82. Stott SL, Hsu CH, Tsukrov DI, et al (2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A, 107, 18392-7. https://doi.org/10.1073/pnas.1012539107
  83. Taylor DD, Gercel-Taylor C (2005). Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer, 92, 305-11. https://doi.org/10.1038/sj.bjc.6602316
  84. Tian H, Jaquins-Gerstl A, Munro N, et al (2000). Single-strand conformation polymorphism analysis by capillary and microchip electrophoresis: a fast, simple method for detection of common mutations in BRCA1 and BRCA2. Genomics, 63, 25-34. https://doi.org/10.1006/geno.1999.6067
  85. Tsujiura M, Ichikawa D, Komatsu S, et al (2010). Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer, 102, 1174-9. https://doi.org/10.1038/sj.bjc.6605608
  86. Van Loo P, Voet T (2014). Single cell analysis of cancer genomes. Curr Opin Genet Dev, 24, 82-91. https://doi.org/10.1016/j.gde.2013.12.004
  87. Vidi PA, Leary JF, Lelievre SA (2013). Building risk-on-achip models to improve breast cancer risk assessment and prevention. Integr Biol, 5, 1110-8. https://doi.org/10.1039/c3ib40053k
  88. Wang C, Ye M, Cheng L, et al (2015). Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. Biomaterials, 54, 55-62. https://doi.org/10.1016/j.biomaterials.2015.03.004
  89. Wang J, Chen J, Sen S (2016). MicroRNA as Biomarkers and Diagnostics. J Cell Physiol, 231, 25-30. https://doi.org/10.1002/jcp.25056
  90. Whitesides GM (2006). The origins and the future of microfluidics. Nature, 442, 368-73. https://doi.org/10.1038/nature05058
  91. Whitesides GM, Ostuni E, Takayama S, et al (2001). Soft lithography in biology and biochemistry. Annu Rev Biomed Eng, 3, 335-73. https://doi.org/10.1146/annurev.bioeng.3.1.335
  92. Wu A, Wang L, Jensen E, et al (2010). Modular integration of electronics and microfluidic systems using flexible printed circuit boards. Lab Chip, 10, 519-21. https://doi.org/10.1039/B922830F
  93. Xi L, Nicastri DG, El-Hefnawy T, et al (2007). Optimal markers for real-time quantitative reverse transcription PCR detection of circulating tumor cells from melanoma, breast, colon, esophageal, head and neck, and lung cancers. Clin Chem, 53, 1206-15. https://doi.org/10.1373/clinchem.2006.081828
  94. Yang J, Vykoukal J, Noshari J, et al (2000). Dielectrophoresis-Based Microfluidic Separation and Detection Systems. Int J Adv Manuf Syst, 3, 1-12.
  95. Yang J, Weinberg RA (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell, 14, 818-29. https://doi.org/10.1016/j.devcel.2008.05.009
  96. Zhang P, Sun C, Zhang R, et al (2013). A novel and facile microchip based on nitrocellulose membrane toward efficient capture of circulating tumor cells. Se Pu, 31, 518-21 (in Chinese).
  97. Zhang Z, Nagrath S (2013). Microfluidics and cancer: are we there yet? Biomed Microdevices, 15, 595-609. https://doi.org/10.1007/s10544-012-9734-8
  98. Zhao L, Lu YT, Li F, et al (2013). High-purity prostate circulating tumor cell isolation by a polymer nanofiber-embedded microchip for whole exome sequencing. Adv Mater, 25, 2897-902. https://doi.org/10.1002/adma.201205237
  99. Zheng S, Lin H, Liu JQ, et al (2007). Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A, 1162, 154-61. https://doi.org/10.1016/j.chroma.2007.05.064
  100. Zheng S, Lin HK, Lu B, et al (2011). 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed Microdevices, 13, 203-13. https://doi.org/10.1007/s10544-010-9485-3
  101. Zubritsky E (1999). Science: microchip gets a tip. Anal Chem, 71, 590-1

Cited by

  1. Noninvasive prenatal diagnosis of fetal aneuploidy by circulating fetal nucleated red blood cells and extravillous trophoblasts using silicon-based nanostructured microfluidics vol.10, pp.1, 2017, https://doi.org/10.1186/s13039-017-0343-3
  2. Combined immunomagnetic capture coupled with ultrasensitive plasmonic detection of circulating tumor cells in blood vol.20, pp.4, 2018, https://doi.org/10.1007/s10544-018-0333-1
  3. A Silicon-based Coral-like Nanostructured Microfluidics to Isolate Rare Cells in Human Circulation: Validation by SK-BR-3 Cancer Cell Line and Its Utility in Circulating Fetal Nucleated Red Blood Cells vol.10, pp.2, 2019, https://doi.org/10.3390/mi10020132