Next Article in Journal
An Application of the Homotopy Analysis Method for the Time- or Space-Fractional Heat Equation
Next Article in Special Issue
Some New Applications of the Faber Polynomial Expansion Method for Generalized Bi-Subordinate Functions of Complex Order γ Defined by q-Calculus
Previous Article in Journal
Fractional-Order Negative Position Feedback for Vibration Attenuation
Previous Article in Special Issue
Subordination Properties of Certain Operators Concerning Fractional Integral and Libera Integral Operator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Versions of Fractional Inequalities for Exponential Trigonometric Convex Mappings via Ordered Relation on Interval-Valued Settings

by
Muhammad Bilal Khan
1,*,
Adriana Cătaş
2,*,
Najla Aloraini
3 and
Mohamed S. Soliman
4
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Mathematics and Computer Science, University of Oradea, 1 University Street, 410087 Oradea, Romania
3
Department of Mathematics, College of Sciences and Arts Onaizah, Qassim University, P.O. Box 6640, Buraydah 51452, Saudi Arabia
4
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Submission received: 2 February 2023 / Revised: 21 February 2023 / Accepted: 27 February 2023 / Published: 1 March 2023
(This article belongs to the Special Issue Fractional Calculus and Hypergeometric Functions in Complex Analysis)

Abstract

:
This paper’s main goal is to introduce left and right exponential trigonometric convex interval-valued mappings and to go over some of their important characteristics. Additionally, we demonstrate the Hermite–Hadamard inequality for interval-valued functions by utilizing fractional integrals with exponential kernels. Moreover, we use the idea of left and right exponential trigonometric convex interval-valued mappings to show various findings for midpoint- and Pachpatte-type inequalities. Additionally, we show that the results provided in this paper are expansions of several of the results already demonstrated in prior publications The suggested research generates variants that are applicable for conducting in-depth analyses of fractal theory, optimization, and research challenges in several practical domains, such as computer science, quantum mechanics, and quantum physics.

1. Introduction

It is common knowledge that mathematical subjects such as mathematical economy, probability theory, optimal control theory, and others depend heavily on convex function and convexity. Classical convexity has been expanded and generalized over time to include harmonic convexity, h-convexity, and p-convexity, among others. In reality, inequality is the basis for the ideas of convexity and convex function, and its significance cannot be overstated. One of the most significant classical inequalities, the Hermite–Hadamard (HH) inequality below, has recently received a lot of attention.
For a convex mapping Ϣ : K on an interval K = [ ȥ ,   ѵ ] , the HH inequality is written as:
Ϣ ( ȥ + ѵ 2 ) 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
For all ȥ ,   ѵ K , with K being a convex set. If Ϣ is concave, then (1) is reversed.
The following inequality as the weighted generalization of (1) was established by Fejér in [1]. This important generalization of the HH inequality is known as the HH–Fejér inequality.
Let us consider Ϣ : K = [ ȥ ,   ѵ ] a convex mapping on a convex set K , and ȥ ,   ѵ K . Then, we have
Ϣ ( ȥ + ѵ 2 ) 1 ȥ ѵ C ( ϰ ) d ϰ ȥ ѵ Ϣ ( ϰ ) C ( ϰ ) d ϰ Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
If C ( ϰ ) = 1 , then we obtain (1) from (2). For a concave mapping, (2) is reversed. Different inequalities can be derived using distinct symmetric convex mappings, C ( ϰ ) .
Integral inequality (1) and (2) in various variants have also been extensively examined in [2,3,4,5,6,7,8,9,10] due to the differences between the ideas of convexity. In order to further their study and take advantage of the growing significance of fractional integrals, numerous writers have combined fractional integrals and Hermite–Hadamard-type inequalities. Recent advances in this field in different areas of mathematics can easily be seen and we refer readers to references [11,12,13,14,15,16,17,18,19,20,21,22].
Some fractional Hermite–Hadamard-type inequalities have been discovered in this way; for more information, see references [23,24,25,26,27,28,29,30,31,32]. This field of inequalities has many applications. Similarly, various other types of inequalities have found the bounds of mean inequalities. For more information, see also [33,34,35,36,37,38,39,40,41,42,43].
On the other hand, Moore initially presented interval analysis as a key method to manage interval uncertainty [44]. This has a wide range of applications [45,46,47,48,49,50,51,52,53,54]. Recently, Khan et al. also contributed to this field and defined different types of inequalities using crip theory and fuzzy theory, see [55,56,57,58].
In particular, researchers such as Chalco-Cano et al. [59,60], Costa and Román-Flores [61], Zhao et al. [62,63], An et al. [64], and others have studied a number of classical inequalities with interval-valued functions. Budak et al. [65] demonstrated the fractional Hermite–Hadamard inequality for the interval convex function as an additional extension. Since then, the authors of [66,67,68,69,70,71,72,73,74,75,76] have extensively investigated various additional improvements to and expansions of Hermite–Hadamard inequalities for different convex fuzzy-valued functions. Additionally, in [77], some Hermite–Hadamard- and Jensen-type inequalities for up and down convex fuzzy-number-valued functions were discovered. In this study, several Hermite–Hadamard-type inequalities for interval-valued left and right exponential trigonometric functions are established. The earlier inequalities described in [78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93] are generalized by our findings. For more information, see [94,95,96,97,98,99].
We establish some additional modifications for interval fractional Hermite–Hadamard-type inequalities as a result of [77,78,85,86]. Our findings clarify some previous questions. Furthermore, it is possible that the findings will be acknowledged as important approaches to investigating the study of interval-valued differential equations, interval optimization, and interval vector spaces, among other things. In Section 2, we provide an introduction. The idea of left and right exponential trigonometric I-V∙M is introduced in Section 3 along with several intervals fractional Hermite–Hadamard-type inequalities that are proven. Finally, several examples are provided in Section 4.

2. Preliminaries

Let X C be the space of all closed and bounded intervals of and Л X C defined by
Л = [ Л * ,   Л * ] = { ϰ |   Л * ϰ Л * } , ( Л * ,   Л * ) .
If Л * = Л * , then Л is said to be degenerate. In this article, all intervals will be non-degenerate intervals. If Л * 0 , then [ Л * ,   Л * ] is called a positive interval. The set of all positive intervals is denoted by X C + and defined as
X C + = { [ Л * ,   Л * ] : [ Л * ,   Л * ] X C   and   Л * 0 } .
Let λ and λ Л be defined by
λ Л = { [ λ Л * ,   λ Л * ] if   λ > 0 , { 0 } if   λ = 0 , [ λ Л * Л * ] if   λ < 0 .
Then, the Minkowski difference Ʋ Л , addition Л + Ʋ and Л × Ʋ for Л , Ʋ X C are defined by
[ Ʋ * ,   Ʋ * ] + [ Л * ,   Л * ] = [ Ʋ * + Л * ,     Ʋ * + Л * ] ,
[ Ʋ * ,   Ʋ * ] × [ Л * ,   Л * ] = [ min { Ʋ * Л * ,   Ʋ * Л * ,   Ʋ * Л * ,   Ʋ * Л * } ,   max { Ʋ * Л * ,   Ʋ * Л * ,   Ʋ * Л * ,   Ʋ * Л * } ]
[ Ʋ * ,   Ʋ * ] [ Л * ,   Л * ] = [ Ʋ * Л * ,     Ʋ * Л * ] .
Remark 1.
For given  [ Ʋ * ,   Ʋ * ] ,   [ Л * ,   Л * ] X C ,  we say that  [ Ʋ * ,   Ʋ * ] p [ Л * ,   Л * ]  if and only if  Ʋ * Л * ,   Ʋ * Л *  is a partial interval order relation [84].
For [ Ʋ * ,   Ʋ * ] ,   [ Л * ,   Л * ] X C , the Hausdorff–Pompeiu distance between intervals [ Ʋ * ,   Ʋ * ] and [ Л * ,   Л * ] is defined by
d H ( [ Ʋ * ,   Ʋ * ] ,   [ Л * ,   Л * ] ) = ma ϰ { | Ʋ * Л * | ,   | Ʋ * Л * | } .
It is a familiar fact that ( X C , d H ) is a complete metric space, see [79,82,83].

3. Fractional Integral Operators of Real- and Interval-Valued Mappings

Now, we define and discuss some properties of fractional integral operators of real- and interval-valued mappings.
Theorem 1.
If  Ϣ : [ ȥ , ѵ ] X C  is an interval-valued mapping (I∙V∙M) satisfying that  Ϣ ( ϰ ) = [ Ϣ * ( ϰ ) ,   Ϣ * ( ϰ ) ] , then  Ϣ  is Aumann integrable (IA-integrable) over  [ ȥ , ѵ ]  when and only when  Ϣ * ( ϰ )  and  Ϣ * ( ϰ )  are both integrable over  [ ȥ , ѵ ]  such that [79,81]
( I A ) ȥ ѵ Ϣ ( ϰ ) d ϰ = [ ȥ   ѵ Ϣ * ( ϰ ) d ϰ ,   ȥ ѵ Ϣ * ( ϰ ) d ϰ ] .
Definition 1.
Let  α > 0  and  L ( [ ȥ ,   ѵ ] ,   )  be the collection of all Lebesgue-measurable mapping on  [ ȥ , ѵ ] . Then, the left and right Riemann–Liouville fractional integral with exponential kernels in connection of  Ϣ L ( [ ȥ ,   ѵ ] , )  with order  α > 0  are, respectively, defined by [85]: 
ȥ + α Ϣ ( ϰ ) = 1 α ȥ ϰ e ( 1 α α ( ϰ v ) ) Ϣ ( v ) d v , ( ϰ > ȥ ) ,
 and
ѵ α Ϣ ( ϰ ) = 1 α ϰ ѵ e ( 1 α α ( v ϰ ) ) Ϣ ( v ) d v , ( ϰ < ѵ )
Definition 2.
Let  α > 0  and  L ( [ ȥ ,   ѵ ] , X C   )  be the collection of all Lebesgue-measurable interval-valued mapping on  [ ȥ , ѵ ] . Then, the left and right Riemann–Liouville fractional integral with exponential kernels in connection of  Ϣ L ( [ ȥ ,   ѵ ] , X C   )  with order  α > 0  are, respectively, defined by [86]
ȥ + α Ϣ ( ϰ ) = [ ȥ + α Ϣ * ( ϰ ) , ȥ + α Ϣ * ( ϰ ) ] = 1 α ȥ ϰ e ( 1 α α ( ϰ v ) ) [ Ϣ * ( v ) , Ϣ * ( v ) ] d v , ( ϰ > ȥ ) ,
and
ѵ α Ϣ ( ϰ ) = [ ѵ α Ϣ * ( ϰ ) , ѵ α Ϣ * ( ϰ ) ] = 1 α ϰ ѵ e ( 1 α α ( v ϰ ) ) [ Ϣ * ( v ) , Ϣ * ( v ) ] d v , ( ϰ < ѵ ) ,
Definition 3.
The mapping  Ϣ : [ ȥ ,   ѵ ]  is called exponential trigonometric convex mapping on  [ ȥ ,   ѵ ]  if [78]
Ϣ ( v ϰ + ( 1 v ) s ) sin π v 2 e 1 v Ϣ ( ϰ ) + cos π v 2 e v Ϣ ( s ) .
For all  ϰ ,   s [ ȥ ,   ѵ ] ,   v [ 0 ,   1 ] ,  and  ϰ [ ȥ ,   ѵ ] .  If (14) is reversed, then  Ϣ  is called exponential trigonometric concave mapping on  [ ȥ ,   ѵ ] .

4. Left and Right Exponential Trigonometric Convex Interval-Valued Functions

In following results, we will use left and right Riemann–Liouville fractional integrals with left and right exponential kernels, and some nontrivial examples are also given to prove the validity of these integrals and results.
Definition 4.
The I-V∙M  Ϣ : [ ȥ ,   ѵ ] X C    is called a left and right exponential trigonometric convex I-V∙M on  [ ȥ ,   ѵ ]  if
Ϣ ( v ϰ + ( 1 v ) s ) p sin π v 2 e 1 v Ϣ ( ϰ ) + cos π v 2 e v Ϣ ( s ) .
For all   ϰ ,   s [ ȥ ,   ѵ ] ,   v [ 0 ,   1 ] ,  where  Ϣ ( ϰ ) p 0  for all  ϰ [ ȥ ,   ѵ ] .  If (15) is reversed, then  Ϣ  is called a left and right exponential trigonometric concave I-V∙M on  [ ȥ ,   ѵ ] .
Theorem 2.
Let  K  be an invex set and  Ϣ : K X C    be a F-N-V∙M given by
Ϣ ( ϰ ) = [ Ϣ * ( ϰ ) ,   Ϣ * ( ϰ ) ] ,     ϰ K .
For all  ϰ K . Then  Ϣ  is a left and right exponential trigonometric convex F-N-V∙M on  K  if and only if  Ϣ * ( ϰ )  and  Ϣ * ( ϰ )  are both exponential trigonometric convex mappings.
Proof. 
Consider that Ϣ * ( ϰ ) and Ϣ * ( ϰ ) are both exponential trigonometric convex and concave mappings on K , respectively. Then, from (14), we have
Ϣ * ( v ϰ + ( 1 v ) s ) sin π v 2 e 1 v Ϣ * ( ϰ ) + cos π v 2 e v Ϣ * ( s ) ,   ϰ , s K ,   v [ 0 ,   1 ] ,
and
Ϣ * ( v ϰ + ( 1 v ) s ) sin π v 2 e 1 v Ϣ * ( ϰ ) + cos π v 2 e v Ϣ * ( s ) ,   ϰ , s K ,   v [ 0 ,   1 ] .
Then, by (16), (8), and (10), we obtain
Ϣ ( v ϰ + ( 1 v ) s )        = [ Ϣ * ( v ϰ + ( 1 v ) s ) ,   Ϣ * ( v ϰ + ( 1 v ) s ) ] ,        p sin π v 2 e 1 v [ Ϣ * ( ϰ ) ,   Ϣ * ( ϰ ) ] + cos π v 2 e v [ Ϣ * ( s ) ,   Ϣ * ( s ) ] ,
that is
Ϣ ( v ϰ + ( 1 v ) s ) p sin π v 2 e 1 v Ϣ ( ϰ ) + cos π v 2 e v Ϣ ( s ) ,   ϰ , s K ,   v [ 0 ,   1 ] .
Hence, Ϣ is a left and right exponential trigonometric convex F-N-V∙M on K .
Conversely, let Ϣ be a left and right exponential trigonometric convex F-N-V∙M on K . Then, for all ϰ , s K and v [ 0 ,   1 ] , we have
Ϣ ( v ϰ + ( 1 v ) s ) p sin π v 2 e 1 v Ϣ ( ϰ ) + cos π v 2 e v Ϣ ( s ) .
Therefore, from (16), we have
Ϣ ( v ϰ + ( 1 v ) s ) = [ Ϣ * ( v ϰ + ( 1 v ) s ) ,   Ϣ * ( v ϰ + ( 1 v ) s ) ] .
Again, from (16), (6), and (8), we obtain
sin π v 2 e 1 v Ϣ ( ϰ ) + cos π v 2 e v Ϣ ( ϰ ) = [ sin π v 2 e 1 v Ϣ * ( ϰ ) ,   sin π v 2 e 1 v Ϣ * ( ϰ ) ] + [ cos π v 2 e v Ϣ * ( s ) ,   cos π v 2 e v Ϣ * ( s ) ] .
For all ϰ , s K and v [ 0 ,   1 ] . Then, by left and right exponential trigonometric convexity of Ϣ , we have for all ϰ , s K and v [ 0 ,   1 ] such that
Ϣ * ( v ϰ + ( 1 v ) s ) sin π v 2 e 1 v Ϣ * ( ϰ ) + cos π v 2 e v Ϣ * ( s ) ,
and
Ϣ * ( v ϰ + ( 1 v ) s ) sin π v 2 e 1 v Ϣ * ( ϰ ) + cos π v 2 e v Ϣ * ( s ) .
Hence, the result follows.□
Remark 2.
If  Ϣ * ( ϰ ) = Ϣ * ( ϰ ) , then we obtain the classical definition of exponential trigonometric convex mappings, see [78].
We obtained some new definitions from the literature which will be helpful in investigating some classical and new results as special cases of the main results.
Definition 5.
Let  Ϣ : [ ȥ , ѵ ] X C    be an I-V∙M. Then,  Ϣ ( ϰ )  is given by
Ϣ ( ϰ ) = [ Ϣ * ( ϰ ) ,   Ϣ * ( ϰ ) ] .
 For all  ϰ [ ȥ , ѵ ] . Then,  Ϣ  is a lower left and right exponential trigonometric convex (concave) I-V∙M on  [ ȥ , ѵ ]  if and only if
Ϣ * ( v ϰ + ( 1 v ) s ) ( ) sin π v 2 e 1 v Ϣ * ( ϰ ) + cos π v 2 e v Ϣ * ( s ) ,
and
Ϣ * ( v ϰ + ( 1 v ) s ) = sin π v 2 e 1 v Ϣ * ( ϰ ) + cos π v 2 e v Ϣ * ( s )
Definition 6.
Suppose that  Ϣ : [ ȥ , ѵ ] X C    is an I-V∙M that is defined by
Ϣ ( ϰ ) = [ Ϣ * ( ϰ ) ,   Ϣ * ( ϰ ) ]
For all  ϰ [ ȥ , ѵ ] .  Then,  Ϣ  is an upper left and right exponential trigonometric convex (concave) I-V∙M on  [ ȥ , ѵ ]  if and only if
Ϣ * ( v ϰ + ( 1 v ) s ) = sin π v 2 e 1 v Ϣ * ( ϰ ) + cos π v 2 e v Ϣ * ( s ) ,
 and
Ϣ * ( v ϰ + ( 1 v ) s ) ( ) sin π v 2 e 1 v Ϣ * ( ϰ ) + cos π v 2 e v Ϣ * ( s ) .

5. Riemann–Liouville Fractional Integrals Hermite–Hadamard-Type Inequalities

In the following section, we use the new concept of left and right exponential trigonometric convex interval-valued mapping to illustrate a few Riemann–Liouville fractional integrals Hermite–Hadamard-type inequalities having exponential kernels.
Theorem 3.
Let  Ϣ : [ ȥ ,   ѵ ] X C +  be an I-V∙M on  [ ȥ ,   ѵ ]  given by  Ϣ ( ϰ ) = [ Ϣ * ( ϰ ) ,   Ϣ * ( ϰ ) ]  for all  ϰ [ ȥ ,   ѵ ] . If  Ϣ  is a left and right exponential trigonometric convex I-V∙M on  [ ȥ ,   ѵ ]  and  Ϣ L ( [ ȥ ,   ѵ ] , X C + ) , then
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 α 2 ( 1 e ρ ) [ ȥ + α Ϣ ( ѵ ) + ѵ α Ϣ ( ȥ ) ] p ρ 1 e ρ C ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
If  Ϣ ( ϰ )  is a left and right exponential trigonometric concave I-V∙M, then 
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 α 2 ( 1 e ρ ) [ ȥ + α Ϣ ( ѵ ) + ѵ α Ϣ ( ȥ ) ] p ρ 1 e ρ C ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2
 where 
C ( ρ ) = 4 ρ + 2 π e ρ 1 + 4 4 ρ 2 + 8 ρ + π 2 + 4 + 2 π e 1 + 4 e ρ 1 ( e + ρ e ) 4 ρ 2 8 ρ + π 2 + 4 ,   ρ = 1 α α ( ѵ ȥ )   and   1 > α > 0 .
Proof. 
Let Ϣ : [ ȥ ,   ѵ ] X C + be a left and right exponential trigonometric convex I-V∙M. Then, by hypothesis, we have
Ϣ ( ȥ + ѵ 2 ) p sin π 4 e Ϣ ( v ȥ + ( 1 v ) ѵ ) + cos π 4 e Ϣ ( ( 1 v ) ȥ + v ѵ ) .
After simplification, we find that
2 Ϣ ( ȥ + ѵ 2 ) p 2 e [ Ϣ ( v ȥ + ( 1 v ) ѵ ) + Ϣ ( ( 1 v ) ȥ + v ѵ ) ] .
Therefore, we have
2 Ϣ * ( ȥ + ѵ 2 ) 2 e [ Ϣ * ( v ȥ + ( 1 v ) ѵ ) + Ϣ * ( ( 1 v ) ȥ + v ѵ ) ] ,
2 Ϣ * ( ȥ + ѵ 2 ) 2 e [ Ϣ * ( v ȥ + ( 1 v ) ѵ ) + Ϣ * ( ( 1 v ) ȥ + v ѵ ) ] .
Taking Ϣ * ( . ) and multiplying both sides by e ρ v and integrating the obtained result with respect to v from 0 to 1 , we have
2 0 1 e ρ v Ϣ * ( ȥ + ѵ 2 ) d v   2 e [ 0 1 e ρ v Ϣ * ( v ȥ + ( 1 v ) ѵ ) d v + 0 1 e ρ v Ϣ * ( ( 1 v ) ȥ + v ѵ ) d v ] .
Let u = v ȥ + ( 1 v ) ѵ and ϰ = ( 1 v ) ȥ + v ѵ . Then, we have
2 0 1 e ρ v Ϣ * ( ȥ + ѵ 2 ) d v   2 e 1 ѵ ȥ   ȥ ѵ e ( 1 α α ( ѵ u ) ) Ϣ * ( u ) d u + 1 ѵ ȥ ȥ ѵ e ( 1 α α ( ϰ ȥ ) ) Ϣ * ( ϰ ) d ϰ = 2 e α ѵ ȥ [ ȥ + α   Ϣ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) ] .
Now, taking the right side of Equation (19), we have
0 1 e ρ v Ϣ * ( ȥ + ѵ 2 ) d v = 1 e ρ ρ Ϣ * ( ȥ + ѵ 2 ) .
From (19) and (20), we have
2 α · 1 e ρ ρ Ϣ * ( ȥ + ѵ 2 ) 2 e · 1 ѵ ȥ [ ȥ + α   Ϣ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) ] .
Similarly, for Ϣ * ( ϰ ) , we have
2 α · 1 e ρ ρ Ϣ * ( ȥ + ѵ 2 ) 2 e · 1 ѵ ȥ [ ȥ + α   Ϣ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) ] .
From (21) and (22), we have
2 α · 1 e ρ ρ [ Ϣ * ( ȥ + ѵ 2 ) ,   Ϣ * ( ȥ + ѵ 2 ) ]   p 2 e · 1 ѵ ȥ [ [ ȥ + α   Ϣ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) ] ,   [ ȥ + α   Ϣ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) ] ] .
That is
2 α · 1 e ρ ρ   Ϣ ( ȥ + ѵ 2 ) p 2 e · 1 ѵ ȥ [ ȥ + α Ϣ ( ѵ ) + ѵ α Ϣ ( ȥ ) ] .
For the right side of Equation (17), since Ϣ is a left and right exponential trigonometric convex I-V∙M, we can deduce that
Ϣ ( v ȥ + ( 1 v ) ѵ ) p sin π v 2 e 1 v Ϣ ( ȥ ) + cos π v 2 e v Ϣ ( ѵ ) ,
and
Ϣ ( ( 1 v ) ȥ + v ѵ ) p cos π v 2 e v Ϣ ( ȥ ) + sin π v 2 e 1 v Ϣ ( ѵ ) .
Adding (24) and (25), we have
Ϣ ( v ȥ + ( 1 v ) ѵ ) + Ϣ ( ( 1 v ) ȥ + v ѵ ) p [ Ϣ ( ȥ ) + Ϣ ( ѵ ) ] [ sin π v 2 e 1 v + cos π v 2 e v ] .
Since Ϣ is I-V∙M, then we have
Ϣ * ( v ȥ + ( 1 v ) ѵ ) + Ϣ * ( ( 1 v ) ȥ + v ѵ ) [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] [ sin π v 2 e 1 v + cos π v 2 e v ] ,   Ϣ * ( v ȥ + ( 1 v ) ѵ ) + Ϣ * ( ( 1 v ) ȥ + v ѵ ) [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] [ sin π v 2 e 1 v + cos π v 2 e v ] .  
Taking Ϣ * ( . ) from (27) and multiplying the inequality with e ρ v , and integrating the resultant with v from 0 to 1 , we have
0 1 e ρ v Ϣ * ( v ȥ + ( 1 v ) ѵ ) d v + 0 1 e ρ v Ϣ * ( ( 1 v ) ȥ + v ѵ ) d v [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] 0 1 e ρ v [ sin π v 2 e 1 v + cos π v 2 e v ] d v , = 4 ρ + 2 π e ρ 1 + 4 4 ρ 2 + 8 ρ + π 2 + 4 + 2 π e 1 + 4 e ρ 1 ( e + ρ e ) 4 ρ 2 8 ρ + π 2 + 4 [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] .
In a similar way to the above, for Ϣ * ( . ) we have
0 1 e ρ v Ϣ * ( v ȥ + ( 1 v ) ѵ ) d v + 0 1 e ρ v Ϣ * ( ( 1 v ) ȥ + v ѵ ) d v [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] 0 1 e ρ v [ sin π v 2 e 1 v + cos π v 2 e v ] d v , = 4 ρ + 2 π e ρ 1 + 4 4 ρ 2 + 8 ρ + π 2 + 4 + 2 π e 1 + 4 e ρ 1 ( e + ρ e ) 4 ρ 2 8 ρ + π 2 + 4 [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] .
From (28) and (29), we have
0 1 e ρ v Ϣ ( v ȥ + ( 1 v ) ѵ   ) d v + 0 1 e ρ v Ϣ ( ( 1 v ) ȥ + v ѵ   ) d v p 4 ρ + 2 π e ρ 1 + 4 4 ρ 2 + 8 ρ + π 2 + 4 + 2 π e 1 + 4 e ρ 1 ( e + ρ e ) 4 ρ 2 8 ρ + π 2 + 4 [ Ϣ ( ȥ ) + Ϣ ( ѵ ) ] .
From (37) and (30), we have
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 α 2 ( 1 e ρ ) [ ȥ + α Ϣ ( ѵ ) + ѵ α Ϣ ( ȥ ) ] p ρ 1 e ρ C ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
Hence, the required result. □
If we consider some mild restrictions on Theorem 3, then the following new and classical outcomes can be obtained.
Remark 3.
From Theorem 3, we can clearly see the following.
If one lays  Ϣ  which is an upper left and right exponential trigonometric concave I-V∙M on  [ ȥ , ѵ ] ,  then one acquires the following inequality [98]:
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 α 2 ( 1 e ρ ) [ ȥ + α Ϣ ( ѵ ) + ѵ α Ϣ ( ȥ ) ] p ρ 1 e ρ C ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
If α 1 , then
lim α 1 ρ = lim α 1 1 α α ( ѵ ȥ ) = 0 , then
lim α 1 ( 4 ρ + 2 π e ρ 1 + 4 4 ρ 2 + 8 ρ + π 2 + 4 + 2 π e 1 + 4 e ρ 1 ( e + ρ e ) 4 ρ 2 8 ρ + π 2 + 4 ) = 2 π e 1 + 4 π 2 + 4 ,   lim α 1 1 α 2 ( 1 e ρ ) = 1 2 ( ѵ ȥ ) .
Now from Theorem 3, we acquire the following result, which is also a new one:
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ p 2 π e 1 + 4 π 2 + 4 [ Ϣ ( ȥ ) + Ϣ ( ѵ ) ] .
If one lays α 1 and Ϣ which is an upper left and right exponential trigonometric concave I-V∙M on [ ȥ , ѵ ] , then one can acquire the following inequality [98]:
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ p 2 π e 1 + 4 π 2 + 4 [ Ϣ ( ȥ ) + Ϣ ( ѵ ) ] .
Let α 1 and Ϣ * ( ϰ ) Ϣ * ( ϰ ) . Then, from Theorem 3, we achieve the Hermite–Hadamard inequality for the interval-valued left and right exponential trigonometric convex mapping, which is also a new one:
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ p 2 π e 1 + 4 π 2 + 4 [ Ϣ ( ȥ ) + Ϣ ( ѵ ) ] .
If Ϣ * ( ϰ ) = Ϣ * ( ϰ ) , then, from Theorem 3, we arrive at classical fractional Hermite–Hadamard inequality for the exponential trigonometric convex mapping.
e 2 Ϣ ( ȥ + ѵ 2 ) 1 α 2 ( 1 e ρ ) [ ȥ + α   Ϣ ( ѵ ) + ѵ α   Ϣ ( ȥ ) ] ρ 1 e ρ C ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
Let α 1 and Ϣ * ( ϰ ) = Ϣ * ( ϰ ) . Then, from Theorem 3, we achieve the classical Hermite–Hadamard inequality for the exponential trigonometric convex mapping, see [78].
e 2 Ϣ ( ȥ + ѵ 2 ) 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ 2 π e 1 + 4 π 2 + 4 [ Ϣ ( ȥ ) + Ϣ ( ѵ ) ] .
Example 1.
Let  α = 1 2 ,   ϰ [ 0 , 1 ] , and the I-V∙M  Ϣ : [ ȥ ,   ѵ ] = [ 0 ,   1 ] X C + ,  defined by  Ϣ ( ϰ ) = [ 2 ϰ 2 , 4 ϰ 2 ] . Since left and right end point mappings  Ϣ * ( ϰ ) = 2 ϰ 2 ,   Ϣ * ( ϰ ) = 4 ϰ 2  are exponential trigonometric convex mappings, then  Ϣ ( ϰ )  is a left and right exponential trigonometric convex I-V∙M. We can clearly see that  Ϣ L ( [ ȥ ,   ѵ ] , X C + )  and
e 2 Ϣ * ( ȥ + ѵ 2 ) = Ϣ * ( 5 2 ) = e 2 2
e 2 Ϣ * ( ȥ + ѵ 2 ) = Ϣ * ( 5 2 ) = e 2
ρ 1 e ρ C ( ρ ) Ϣ * ( ȥ ) + Ϣ * ( ѵ ) 2 = 8 + 2 π e 2 2 ( 16 + π 2 ) ( 1 e 1 )
ρ 1 e ρ C ( ρ ) Ϣ * ( ȥ ) + Ϣ * ( ѵ ) 2 = 8 + 2 π e 2 ( 16 + π 2 ) ( 1 e 1 ) .
Note that
1 α 2 ( 1 e ρ ) [ ȥ + α   Ϣ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) ] = 1 2 ( 1 e 1 ) 0 1 e ( 1 ϰ )   .   2 ϰ 2 d ϰ + 1 2 ( 1 e 1 ) 0 1 e ϰ   .2 ϰ 2 d ϰ = 1 1 e 1 [ 1 2 e 1 + 2 5 e 1 ] = 3 7 e 1 1 e 1 .
1 α 2 ( 1 e ρ ) [ ȥ + α   Ϣ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) ] = 1 2 ( 1 e 1 ) 0 1 e ( 1 ϰ )   .   4 ϰ 2 d ϰ + 1 2 ( 1 e 1 ) 0 1 e ϰ   .   4 ϰ 2 d ϰ = 2 1 e 1 [ 1 2 e 1 + 2 5 e 1 ] = 2 ( 3 7 e 1 ) 1 e 1 .
Therefore,
[ e 2 , e 2 ] p [ 8 + 2 π e 2 2 ( 16 + π 2 ) ( 1 e 1 ) , 8 + 2 π e 2 ( 16 + π 2 ) ( 1 e 1 ) ] p [ 3 7 e 1 1 e 1 , 2 ( 3 7 e 1 ) 1 e 1 ]
 and Theorem 3 is verified.
The fractional integrals with exponential kernels can be used to describe Hermite–Hadamard-type inclusions involving midpoint as follows:
Theorem 4.
Let  Ϣ : [ ȥ ,   ѵ ] X C +  be an I-V∙M on  [ ȥ ,   ѵ ]  given by  Ϣ ( ϰ ) = [ Ϣ * ( ϰ ) ,   Ϣ * ( ϰ ) ]  for all  ϰ [ ȥ ,   ѵ ] . If  Ϣ  is a left and right exponential trigonometric convex I-V∙M on  [ ȥ ,   ѵ ]  and  Ϣ L ( [ ȥ ,   ѵ ] , X C + ) , then
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 α 2 ( 1 e ρ 2 ) [ ( ȥ + ѵ 2 ) + α Ϣ ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) ] p ρ 2 ( 1 e ρ 2 ) B ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
If  Ϣ ( ϰ )  is a left and right exponential trigonometric concave I-V∙M, then
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 α 2 ( 1 e ρ 2 ) [ ( ȥ + ѵ 2 ) + α Ϣ ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) ] p ρ 1 e ρ 2 B ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 ,
where  B ( ρ ) = π ( 4 e 1 2 3 2 e ρ + 1 2 ) 2 5 2 ρ e ρ + 1 2 + 2 5 2 e ρ + 1 2 4 ρ 2 8 ρ + π 2 + 4 + 8 ρ + 2 3 2 π e ρ + 1 2 2 5 2 ( ρ + 1 ) e ρ + 1 2 + 8 4 ρ 2 + 8 ρ + π 2 + 4  ,  ρ = 1 α α ( ѵ ȥ ) , and  1 > α > 0 .
Proof. 
Let Ϣ : [ ȥ ,   ѵ ] X C + be a left and right exponential trigonometric convex I-V∙M. Then, by hypothesis, we have
Ϣ ( ȥ + ѵ 2 ) p sin π 4 e Ϣ ( v 2 ȥ + 2 v 2 ѵ ) + cos π 4 e Ϣ ( 2 v 2 ȥ + v 2 ѵ ) .
After simplification, we find that
2 Ϣ ( ȥ + ѵ 2 ) p 2 e [ Ϣ ( v 2 ȥ + 2 v 2 ѵ ) + Ϣ ( 2 v 2 ȥ + v 2 ѵ ) ]
Therefore, we have
2 Ϣ * ( ȥ + ѵ 2 ) 2 e [ Ϣ * ( v 2 ȥ + 2 v 2 ѵ ) + Ϣ * ( 2 v 2 ȥ + v 2 ѵ ) ] ,
2 Ϣ * ( ȥ + ѵ 2 ) 2 e [ Ϣ * ( v 2 ȥ + 2 v 2 ѵ ) + Ϣ * ( 2 v 2 ȥ + v 2 ѵ ) ] .
Taking Ϣ * ( . ) and multiplying both sides by e ρ v 2 and integrating the obtained result with respect to v from 0 to 1 , we have
2 0 1 e ρ v 2 Ϣ * ( ȥ + ѵ 2 ) d v   2 e [ 0 1 e ρ v 2 Ϣ * ( v 2 ȥ + 2 v 2 ѵ ) d v + 0 1 e ρ v 2 Ϣ * ( 2 v 2 ȥ + v 2 ѵ ) d v ] .
Let u = v 2 ȥ + 2 v 2 ѵ and ϰ = 2 v 2 ȥ + v 2 ѵ . Then, we have
2 0 1 e ρ v 2 Ϣ * ( ȥ + ѵ 2 ) d v   2 e 1 ѵ ȥ   ȥ + ѵ 2 ѵ e ( 1 α α ( ѵ u ) ) Ϣ * ( u ) d u + 1 ѵ ȥ ȥ + ѵ 2 ѵ e ( 1 α α ( ϰ ȥ ) ) Ϣ * ( ϰ ) d ϰ = 2 e α ѵ ȥ [ ( ȥ + ѵ 2 ) + α   Ϣ * ( ѵ ) + ( ȥ + ѵ 2 ) α   Ϣ * ( ȥ ) ] .
Now, taking the right side of Equation (39), we have
0 1 e ρ v 2 Ϣ * ( ȥ + ѵ 2 ) d v = 2 ( 1 e ρ ) ρ Ϣ * ( ȥ + ѵ 2 ) .
From (39) and (40), we have
4 · 1 e ρ ρ Ϣ * ( ȥ + ѵ 2 ) 2 e · 2 ( 1 ȥ ) ѵ ȥ [ ( ȥ + ѵ 2 ) + α   Ϣ * ( ѵ ) + ( ȥ + ѵ 2 ) α   Ϣ * ( ȥ ) ] .
Similarly, for Ϣ * ( ϰ ) , we have
4 · 1 e ρ ρ Ϣ * ( ȥ + ѵ 2 ) 2 e · 2 ( 1 ȥ ) ѵ ȥ [ ( ȥ + ѵ 2 ) + α   Ϣ * ( ѵ ) + ( ȥ + ѵ 2 ) α   Ϣ * ( ȥ ) ] .
From (41) and (42), we have
2 · 1 e ρ ρ [ Ϣ * ( ȥ + ѵ 2 ) ,   Ϣ * ( ȥ + ѵ 2 ) ] p 2 e · 1 ȥ ѵ ȥ [ [ ( ȥ + ѵ 2 ) + α   Ϣ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) ] ,   [ ( ȥ + ѵ 2 ) + α   Ϣ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) ] ] .
That is
2 · 1 e ρ ρ   Ϣ ( ȥ + ѵ 2 ) p 2 e · 1 ȥ ѵ ȥ [ ( ȥ + ѵ 2 ) + α Ϣ ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) ] .
For the right side of Equation (37), since Ϣ is a left and right exponential trigonometric convex I-V∙M, we can deduce that
Ϣ ( v 2 ȥ + 2 v 2 ѵ ) p sin π v 4 e 2 v 2 Ϣ ( ȥ ) + cos π v 4 e v 2 Ϣ ( ѵ ) ,
and
Ϣ ( 2 v 2 ȥ + v 2 ѵ ) p cos π v 4 e v 2 Ϣ ( ȥ ) + sin π v 4 e 2 v 2 Ϣ ( ѵ ) .
Adding (44) and (45), we have
Ϣ ( v 2 ȥ + 2 v 2 ѵ ) + Ϣ ( 2 v 2 ȥ + v 2 ѵ ) p [ Ϣ ( ȥ ) + Ϣ ( ѵ ) ] [ sin π v 4 e 2 v 2 + cos π v 4 e v 2 ] .
Since Ϣ is I-V∙M, then we have
Ϣ * ( v 2 ȥ + 2 v 2 ѵ ) + Ϣ * ( 2 v 2 ȥ + v 2 ѵ ) [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] [ sin π ѵ 4 e 2 ѵ 2 + cos π ѵ 4 e ѵ 2 ] , Ϣ * ( v 2 ȥ + 2 v 2 ѵ ) + Ϣ * ( 2 v 2 ȥ + v 2 ѵ ) [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] [ sin π ѵ 4 e 2 ѵ 2 + cos π ѵ 4 e ѵ 2 ] .
Taking Ϣ * ( . ) from (47) and multiplying the inequality by e e ρ v 2 , and integrating the resultant with v from 0 to 1 , we have
0 1 e e ρ v 2 Ϣ * ( v 2 ȥ + 2 v 2 ѵ ) d v + 0 1 e e ρ v 2 Ϣ * ( 2 v 2 ȥ + v 2 ѵ   ) d v                                                      [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] 0 1 e e ρ v 2 [ sin π v 4 2 v 2 + cos π v 4 e v 2 ] d v , = ( π ( 4 e 1 2 3 2 e ρ + 1 2 ) 2 5 2 ρ e ρ + 1 2 + 2 5 2 e ρ + 1 2 4 ρ 2 8 ρ + π 2 + 4 + 8 ρ + 2 3 2 π e ρ + 1 2 2 5 2 ( ρ + 1 ) e ρ + 1 2 + 8 4 ρ 2 + 8 ρ + π 2 + 4 ) [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] .
In a similar way as above, for Ϣ * ( . ) we have
0 1 e e ρ v 2 Ϣ * ( v 2 ȥ + 2 v 2 ѵ ) d v + 0 1 e e ρ v 2 Ϣ * ( 2 v 2 ȥ + v 2 ѵ ) d v     [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] 0 1 e ρ v [ sin π v 4 e 2 v 2 + cos π v 4 e v 2 ] d v     = ( π ( 4 e 1 2 3 2 e ρ + 1 2 ) 2 5 2 ρ e ρ + 1 2 + 2 5 2 e ρ + 1 2 4 ρ 2 8 ρ + π 2 + 4 + 8 ρ + 2 3 2 π e ρ + 1 2 2 5 2 ( ρ + 1 ) e ρ + 1 2 + 8 4 ρ 2 + 8 ρ + π 2 + 4 ) [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] .
From (48) and (49), we have
0 1 e ρ v Ϣ ( v 2 ȥ + 2 v 2 ѵ   ) d v + 0 1 e ρ v Ϣ ( 2 v 2 ȥ + v 2 ѵ   ) d v p ( π ( 4 e 1 2 3 2 e ρ + 1 2 ) 2 5 2 ρ e ρ + 1 2 + 2 5 2 e ρ + 1 2 4 ρ 2 8 ρ + π 2 + 4 + 8 ρ + 2 3 2 π e ρ + 1 2 2 5 2 ( ρ + 1 ) e ρ + 1 2 + 8 4 ρ 2 + 8 ρ + π 2 + 4 ) [ Ϣ ( ȥ ) + Ϣ ( ѵ ) ] .
From (43) and (50), we have
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 α 2 ( 1 e ρ 2 ) [ ( ȥ + ѵ 2 ) + α Ϣ ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) ] p ρ 2 ( 1 e ρ 2 ) B ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
Hence, the required result. □
Remark 4.
From Theorem 4, we can clearly see the following.
If one lays  Ϣ  which is an upper left and right exponential trigonometric concave I-V∙M on  [ ȥ , ѵ ] ,  then one acquires the following inequality [98]:
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 α 2 ( 1 e ρ 2 ) [ ( ȥ + ѵ 2 ) + α Ϣ ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) ] p ρ 2 ( 1 e ρ 2 ) B ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
If  α 1  , that is
lim α 1 ρ = lim α 1 1 α α ( ѵ ȥ ) = 0 , then
lim α 1 ρ 1 e ρ 2 = ( π ( 4 e 1 2 3 2 e ρ + 1 2 ) 2 5 2 ρ e ρ + 1 2 + 2 5 2 e ρ + 1 2 4 ρ 2 8 ρ + π 2 + 4 + 8 ρ + 2 3 2 π e ρ + 1 2 2 5 2 ( ρ + 1 ) e ρ + 1 2 + 8 4 ρ 2 + 8 ρ + π 2 + 4 ) = 4 ( 2 π + 4 e ) e ( π 2 + 4 ) ,   lim α 1 1 α 2 ( 1 e e ρ 2 ) = 1 ѵ ȥ
Then, we acquire the following result, which is also a new one:
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ p 2 π + 4 e e ( π 2 + 4 ) [ Ϣ ( ȥ ) + Ϣ ( ѵ ) ]
If one lays  α 1  and  Ϣ  which is an upper left and right exponential trigonometric concave I-V∙M on  [ ȥ , ѵ ] ,  then one acquires the following inequality [98]:
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ p 2 π + 4 e e ( π 2 + 4 ) [ Ϣ ( ȥ ) + Ϣ ( ѵ ) ]
Let  α 1  and  Ϣ * ( ϰ ) Ϣ * ( ϰ )  . Then, from Theorem 4, we achieve the Hermite–Hadamard inequality for interval-valued   left and right exponential trigonometric convex mapping, which is also a new one:
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ p 2 π + 4 e e ( π 2 + 4 ) [ Ϣ ( ȥ ) + Ϣ ( ѵ ) ]
If  Ϣ * ( ϰ ) = Ϣ * ( ϰ ) ,  then, from Theorem 4, we arrive at classical fractional Hermite–Hadamard inequality for   exponential trigonometric convex mapping.
e 2 Ϣ ( ȥ + ѵ 2 ) 1 α 2 ( 1 e ρ 2 ) [ ( ȥ + ѵ 2 ) + α Ϣ ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) ] ρ 2 ( 1 e ρ 2 ) B ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2
Let  α 1  and  Ϣ * ( ϰ ) = Ϣ * ( ϰ ) . Then, from Theorem 4, we achieve the classical Hermite–Hadamard inequality for exponential trigonometric convex mapping, see [78].
e 2 Ϣ ( ȥ + ѵ 2 ) 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ 2 π + 4 e e ( π 2 + 4 ) [ Ϣ ( ȥ ) + Ϣ ( ѵ ) ] .
Finally, we present the Pachpatte-type fractional integral inclusions. Moreover, in Theorem 5 we will establish a fractional integral inclusion, and discuss the several inclusions via a left and right exponential trigonometric convex I-V∙M.
Theorem 5.
Let  Ϣ , Τ   : [ ȥ ,   ѵ ] X C +  be two I-V∙Ms on  [ ȥ ,   ѵ ]  defined by  Ϣ ( ϰ ) = [ Ϣ * ( ϰ ) ,   Ϣ * ( ϰ ) ]  and  T ( ϰ ) = [ Τ * ( ϰ ) ,   Τ * ( ϰ ) ]  for all  ϰ [ ȥ ,   ѵ ] . If  Ϣ  and  Τ  are two left and right exponential trigonometric convex I-V∙Ms on  [ ȥ ,   ѵ ]  and  Ϣ × Τ L ( [ ȥ ,   ѵ ] , X C + ) , then
α ѵ ȥ [ ȥ + α Ϣ ( ѵ ) × Τ ( ѵ ) + ѵ α Ϣ ( ȥ ) × Τ ( ȥ ) ] p D ( ρ ) Δ ( ȥ , ѵ ) + π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 ( ȥ , ѵ ) .
If  Ϣ ( ϰ )  and  T ( ϰ )  are left and right exponential trigonometric concave I-V∙Ms, then
α ѵ ȥ [ ȥ + α Ϣ ( ѵ ) × Τ ( ѵ ) + ѵ α Ϣ ( ȥ ) × Τ ( ȥ ) ] p D ( ρ ) Δ ( ȥ , ѵ ) + π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 ( ȥ , ѵ ) ,
where  D ( ρ ) = e ρ 2 ( 8 e 2 8 ρ e 2 + π 2 e 2 + 2 ρ 2 e 2 π 2 e ρ ) 2 ( ρ 2 ) ( ρ 2 4 ρ + π 2 + 4 ) + 8 ρ π 2 e ρ 2 + π 2 + 2 ρ 2 + 8 2 ( ρ + 2 ) ( ρ 2 + 4 ρ + π 2 + 4 ) ,  ρ = 1 α α ( ѵ ȥ ) ,  1 > α > 0 ,  Δ ( ȥ , ѵ ) = [ Δ * ( ȥ , ѵ ) ,   Δ * ( ȥ , ѵ ) ]  and  ( ȥ , ѵ ) = [ * ( ȥ , ѵ ) ,   * ( ȥ , ѵ ) ] .
Proof. 
Since Ϣ , Τ are both left and right exponential trigonometric convex I-V∙Ms, taking left end points mappings, we have
Ϣ * ( v ȥ + ( 1 v ) ѵ ) sin π v 2 e 1 v Ϣ * ( ȥ ) + cos π v 2 e v Ϣ * ( ѵ ) ,
and
Τ * ( v ȥ + ( 1 v ) ѵ ) v sin π v 2 e 1 v Τ * ( ȥ ) + cos π v 2 e v Τ * ( ѵ ) .
From the definition of left and right exponential trigonometric convex I-V∙Ms, it follows that 0 p Ϣ ( ϰ ) and 0 I Τ ( ϰ ) , so
Ϣ * ( v ȥ + ( 1 v ) ѵ ) × Τ * ( v ȥ + ( 1 v ) ѵ ) ( sin π v 2 e 1 v Ϣ * ( ȥ ) + cos π v 2 e v Ϣ * ( ѵ ) ) ( sin π v 2 e 1 v Τ * ( ȥ ) + cos π v 2 e v Τ * ( ѵ ) ) = ( sin π v 2 e 1 v ) 2 Ϣ * ( ȥ ) × Τ * ( ȥ ) + ( cos π v 2 e v ) 2 Ϣ * ( ѵ ) × Τ * ( ѵ ) + ( cos π v 2 sin π v 2 e ) Ϣ * ( ȥ ) × Τ * ( ѵ ) + ( cos π v 2 sin π v 2 e ) Ϣ * ( ѵ ) × Τ * ( ȥ )
Analogously, we have
Ϣ * ( ( 1 v ) ȥ + v ѵ ) × Τ * ( ( 1 v ) ȥ + v ѵ ) ( cos π v 2 e v ) 2 Ϣ * ( ȥ ) × Τ * ( ȥ ) + ( sin π v 2 e 1 v ) 2 Ϣ * ( ѵ ) × Τ * ( ѵ ) + ( cos π v 2 sin π v 2 e ) Ϣ * ( ȥ ) × Τ * ( ѵ ) + ( cos π v 2 sin π v 2 e ) Ϣ * ( ѵ ) × Τ * ( ȥ )
Adding (59) and (60), we have
Ϣ * ( v ȥ + ( 1 v ) ѵ ) × Τ * ( v ȥ + ( 1 v ) ѵ ) + Ϣ * ( ( 1 v ) ȥ + v ѵ ) × Τ * ( ( 1 v ) ȥ + v ѵ ) [ ( sin π v 2 e 1 v ) 2 + ( sin π v 2 e 1 v ) 2 ] [ Ϣ * ( ȥ ) × Τ * ( ȥ ) + Ϣ * ( ѵ ) × Τ * ( ѵ ) ] + 2 cos π v 2   sin π v 2 e [ Ϣ * ( ѵ ) × Τ * ( ȥ ) + Ϣ * ( ȥ ) × Τ * ( ѵ ) ]
Multiplying (61) by e ρ v and integrating the obtained result with respect to v over (0,1), we have
0 1 e ρ v Ϣ * ( v ȥ + ( 1 v ) ѵ ) × Τ * ( v ȥ + ( 1 v ) ѵ ) + e ρ v Ϣ * ( ( 1 v ) ȥ + v ѵ ) × Τ * ( ( 1 v ) ȥ + v ѵ ) d v Δ * ( ( ȥ , ѵ ) ) 0 1 e ρ v [ ( sin π v 2 e 1 v ) 2 + ( sin π v 2 e 1 v ) 2 ] d v + 2 * ( ( ȥ , ѵ ) ) 0 1 e ρ v cos π v 2   sin π v 2 e d v
It follows that
α ѵ ȥ [ ȥ + α   Ϣ * ( ѵ ) × Τ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) × Τ * ( ȥ ) ]       D ( ρ ) Δ * ( ( ȥ , ѵ ) ) + π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 * ( ( ȥ , ѵ ) )
Similarly, for Ϣ * ( ϰ ) , we have
α ѵ ȥ [ ȥ + α   Ϣ * ( ѵ ) × Τ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) × Τ * ( ȥ ) ]       D ( ρ ) Δ * ( ( ȥ , ѵ ) ) + π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 * ( ( ȥ , ѵ ) )
where
D ( ρ ) = 0 1 e ρ v [ ( sin π v 2 e 1 v ) 2 + ( sin π v 2 e 1 v ) 2 ] d v = e ρ 2 ( 8 e 2 8 ρ e 2 + π 2 e 2 + 2 ρ 2 e 2 π 2 e ρ ) 2 ( ρ 2 ) ( ρ 2 4 ρ + π 2 + 4 ) + 8 ρ π 2 e ρ 2 + π 2 + 2 ρ 2 + 8 2 ( ρ + 2 ) ( ρ 2 + 4 ρ + π 2 + 4 )
and
0 1 e ρ v cos π v 2   sin π v 2 e d v = π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2
From (62) and (63), we have
α ѵ ȥ [ ȥ + α   Ϣ * ( ѵ ) × Τ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) × Τ * ( ȥ ) ,     ȥ + α   Ϣ * ( ѵ ) × Τ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) × Τ * ( ȥ ) ] p D ( ρ ) [ Δ * ( ( ȥ , ѵ ) ) ,   Δ * ( ( ȥ , ѵ ) ) ] + π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 [ * ( ( ȥ , ѵ ) ) ,   * ( ( ȥ , ѵ ) ) ] .
That is
α ѵ ȥ [ ȥ + α Ϣ ( ѵ ) × Τ ( ѵ ) + ѵ α Ϣ ( ȥ ) × Τ ( ȥ ) ] p D ( ρ ) Δ ( ȥ , ѵ ) + π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 ( ȥ , ѵ ) .
and the theorem has been established. □
Remark 5.
From Theorem 5 we can clearly see the following.
If one lays  Ϣ  which is an upper left and right exponential trigonometric concave I-V∙M on  [ ȥ , ѵ ] ,  then one acquires the following inequality [98]:
α ѵ ȥ [ ȥ + α Ϣ ( ѵ ) × Τ ( ѵ ) + ѵ α Ϣ ( ȥ ) × Τ ( ȥ ) ] p D ( ρ ) Δ ( ȥ , ѵ ) + π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 ( ȥ , ѵ ) .
If  α 1 , that is
lim α 1 ρ = lim α 1 1 α α ( ѵ ȥ ) = 0 , then lim α 1 ( e ρ 2 ( 8 e 2 8 ρ e 2 + π 2 e 2 + 2 ρ 2 e 2 π 2 e ρ ) 2 ( ρ 2 ) ( ρ 2 4 ρ + π 2 + 4 ) + 8 ρ π 2 e ρ 2 + π 2 + 2 ρ 2 + 8 2 ( ρ + 2 ) ( π 2 + 4 ) ) = π 2 π 2 e 2 + 8 2 ( π 2 + 4 ) , lim α 1 π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 = 2 π e
Then, we acquire the following result, which is also a new one:
1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) × Τ ( ϰ ) d ϰ p π 2 π 2 e 2 + 8 4 ( π 2 + 4 ) Δ ( ȥ , ѵ ) + 2 π e ( ȥ , ѵ )
If one lays  α 1  and  Ϣ  which is an upper left and right exponential trigonometric concave I-V∙M on  [ ȥ , ѵ ] ,  then one acquires the following inequality [98]:
1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) × Τ ( ϰ ) d ϰ p π 2 π 2 e 2 + 8 4 ( π 2 + 4 ) Δ ( ȥ , ѵ ) + 2 π e ( ȥ , ѵ )
Let  α 1  and  Ϣ * ( ϰ ) Ϣ * ( ϰ )  . Then, from Theorem 5, we achieve the Hermite–Hadamard inequality for interval-valued   left and right exponential trigonometric convex mapping, which is also a new one:
1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) × Τ ( ϰ ) d ϰ p π 2 π 2 e 2 + 8 4 ( π 2 + 4 ) Δ ( ȥ , ѵ ) + 2 π e ( ȥ , ѵ ) .
If  Ϣ * ( ϰ ) = Ϣ * ( ϰ )  , then, from Theorem 5, we arrive at the classical fractional Hermite–Hadamard inequality for exponential trigonometric convex mapping:
α ѵ ȥ [ ȥ + α   Ϣ ( ѵ ) × Τ ( ѵ ) + ѵ α Ϣ ( ȥ ) × Τ ( ȥ ) ] D ( ρ ) Δ ( ȥ , ѵ ) + π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 ( ȥ , ѵ ) .
Let  α 1  and  Ϣ * ( ϰ ) = Ϣ * ( ϰ ) . Then, from Theorem 5, we achieve the classical Hermite–Hadamard inequality for exponential trigonometric convex mapping, see [78].
1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) × Τ ( ϰ ) d ϰ π 2 π 2 e 2 + 8 4 ( π 2 + 4 ) Δ ( ȥ , ѵ ) + 2 π e ( ȥ , ѵ ) .
Example 2.
Let  [ ȥ , ѵ ] = [ 0 , 1 ] ,  α = 1 4 ,  Ϣ ( ϰ ) = [ ϰ 2 , 2 ϰ 2 ]  and  T ( ϰ ) = [ 2 ϰ 3 , 4 ϰ 3 ] .  Since left and right end point mappings  Ϣ * ( ϰ ) = ϰ 2 ,   Ϣ * ( ϰ ) = 2 ϰ 2 ,  T * ( ϰ ) = 2 ϰ 3  and  T * ( ϰ ) = 4 ϰ 3  are exponential trigonometric convex mappings, then  Ϣ ( ϰ )  and  T ( ϰ )  are both exponential trigonometric convex I-V∙Ms. We can clearly see that  Ϣ ( ϰ ) × T ( ϰ ) L ( [ ȥ ,   ѵ ] , X C + )  and
α ѵ ȥ [ ȥ + α   Ϣ * ( ѵ ) × T * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) × T * ( ȥ ) ] = 0 1 e 3 ( 1 ϰ ) ( 2 ϰ 5 ) d ϰ + 0 1 e 3 ϰ ( 2 ϰ 5 ) d ϰ = ( 80 e 3 243 + 52 243 ) + ( 80 243 1472 e 3 243 ) = ( 44 81 464 e 3 81 )
α ѵ ȥ [ ȥ + α   Ϣ * ( ѵ ) × T * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) × T * ( ȥ ) ] = 0 1 e 3 ( 1 ϰ ) ( 8 ϰ 5 ) d ϰ + 0 1 e 3 ϰ ( 8 ϰ 5 ) d ϰ = 4 [ 44 81 464 e 3 81 ] .
Note that
D ( ρ ) Δ * ( ( ȥ , ѵ ) ) = ( e 5 ( 2 e 2 + π 2 e 2 π 2 e 3 ) 2 ( 1 + π 2 ) + 50 π 2 e 5 + π 2 10 ( 25 + π 2 ) ) [ Ϣ * ( 0 ) × T * ( 1 ) + Ϣ * ( 1 ) × T * ( 1 ) ] = 2 ( 50 π 2 e 5 + π 2 10 ( 25 + π 2 ) e 5 ( 2 e 2 + π 2 e 2 π 2 e 3 ) 2 ( 1 + π 2 ) )
D ( ρ ) Δ * ( ( ȥ , ѵ ) ) = ( e 5 ( 2 e 2 + π 2 e 2 π 2 e 3 ) 2 ( 1 + π 2 ) + 50 π 2 e 5 + π 2 10 ( 25 + π 2 ) ) [ Ϣ * ( ȥ ) × T * ( ȥ ) + Ϣ * ( ѵ ) × T * ( ѵ ) ] = 8 ( 50 π 2 e 5 + π 2 10 ( 25 + π 2 ) e 5 ( 2 e 2 + π 2 e 2 π 2 e 3 ) 2 ( 1 + π 2 ) ) ,
π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 * ( ( ȥ , ѵ ) ) = π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 [ Ϣ * ( 0 ) × T * ( 1 ) + Ʊ * ( 1 ) × T * ( 0 ) ] = 0 ,
π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 * ( ( ȥ , ѵ ) ) = π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 [ Ʊ * ( 1 ) × T * ( 1 ) + Ʊ * ( 1 ) × T * ( 0 ) ] = 0 .
Therefore, we have
D ( ρ ) Δ ( ȥ , ѵ ) + π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 ( ȥ , ѵ )   = ( 50 π 2 e 5 + π 2 10 ( 25 + π 2 ) e 5 ( 2 e 2 + π 2 e 2 π 2 e 3 ) 2 ( 1 + π 2 ) ) [ 2 , 8 ] + π e ρ 1 ( e ρ + 1 ) ρ 2 + π 2 [ 0 , 0 ]   = ( 50 π 2 e 5 + π 2 10 ( 25 + π 2 ) e 5 ( 2 e 2 + π 2 e 2 π 2 e 3 ) 2 ( 1 + π 2 ) ) [ 2 , 8 ]
It follows that
( 44 81 464 e 3 81 ) [ 2 , 4 ] p ( 50 π 2 e 5 + π 2 10 ( 25 + π 2 ) e 5 ( 2 e 2 + π 2 e 2 π 2 e 3 ) 2 ( 1 + π 2 ) ) [ 2 , 8 ] .
and Theorem 5 has been demonstrated.
Theorem 6.
Let  Ϣ , Τ   : [ ȥ ,   ѵ ] X C +  be two I-V∙Ms on  [ ȥ ,   ѵ ]  defined by  Ϣ ( ϰ ) = [ Ϣ * ( ϰ ) ,   Ϣ * ( ϰ ) ]  and  T ( ϰ ) = [ Τ * ( ϰ ) ,   Τ * ( ϰ ) ]  for all  ϰ [ ȥ ,   ѵ ] . If  Ϣ  and  Τ  are two left and right exponential trigonometric convex I-V∙Ms on  [ ȥ ,   ѵ ]  and  Ϣ × Τ L ( [ ȥ ,   ѵ ] , X C + ) , then
2 Ϣ ( ȥ + ѵ 2 ) × Τ ( ȥ + ѵ 2 ) p 1 α e ( 1 e ρ ) [ ȥ + α Ϣ ( ѵ ) × Τ ( ѵ ) + ѵ α Ϣ ( ȥ ) × Τ ( ȥ ) ] + ρ π e ρ 1 ( e ρ + 1 ) e ( 1 e ρ ) ( ρ 2 + π 2 ) ( ȥ , ѵ ) + ρ e ( 1 e ρ ) D ( ρ ) Δ ( ȥ , ѵ ) .
If  Ϣ ( ϰ )  and  Τ ( ϰ )  are left and right exponential trigonometric concave I-V∙Ms, then
2 Ϣ ( ȥ + ѵ 2 ) × Τ ( ȥ + ѵ 2 ) p 1 α e ( 1 e ρ ) [ ȥ + α Ϣ ( ѵ ) × Τ ( ѵ ) + ѵ α Ϣ ( ȥ ) × Τ ( ȥ ) ] + ρ π e ρ 1 ( e ρ + 1 ) e ( 1 e ρ ) ( ρ 2 + π 2 ) ( ȥ , ѵ ) + ρ e ( 1 e ρ ) D ( ρ ) Δ ( ȥ , ѵ ) .
where  D ( ρ ) = e ρ 2 ( 8 e 2 8 ρ e 2 + π 2 e 2 + 2 ρ 2 e 2 π 2 e ρ ) 2 ( ρ 2 ) ( ρ 2 4 ρ + π 2 + 4 ) + 8 ρ π 2 e ρ 2 + π 2 + 2 ρ 2 + 8 2 ( ρ + 2 ) ( ρ 2 + 4 ρ + π 2 + 4 ) ,  ρ = 1 α α ( ѵ ȥ ) ,  1 > α > 0 ,  Δ ( ȥ , ѵ ) = [ Δ * ( ȥ , ѵ ) ,   Δ * ( ȥ , ѵ ) ]  and  ( ȥ , ѵ ) = [ * ( ȥ , ѵ ) ,   * ( ȥ , ѵ ) ] .
Proof. 
Consider Ϣ , Τ : [ ȥ ,   ѵ ] X C + are left and right exponential trigonometric convex I-V∙Ms. Then, by hypothesis, we have
Ϣ * ( ȥ + ѵ 2   ) × Τ * ( ȥ + ѵ 2 )   1 2 e [ Ϣ * ( v ȥ + ( 1 v ) ѵ ) × Τ * ( v ȥ + ( 1 v ) ѵ ) + Ϣ * ( ( 1 v ) ȥ + ( 1 v ) ѵ ) × Τ * ( ( 1 v ) ȥ + v ѵ ) ]     + 1 2 e [ Ϣ * ( ( 1 v ) ȥ + v ѵ ) × Τ * ( v ȥ + ( 1 v ) ѵ ) + Ϣ * ( v ȥ + ( 1 v ) ѵ ) × Τ * ( ( 1 v ) ȥ + v ѵ ) ]   1 2 e [ Ϣ * ( v ȥ + ( 1 v ) ѵ ) × Τ * ( v ȥ + ( 1 v ) ѵ ) + Ϣ * ( ( 1 v ) ȥ + v ѵ ) × Τ * ( ( 1 v ) ȥ + v ѵ ) ]     + 1 2 e [ ( cos π v 2 e v Ϣ * ( ȥ ) + sin π v 2 e 1 v Ϣ * ( ѵ ) ) × ( sin π v 2 e 1 v Τ * ( ȥ ) + cos π v 2 e v Τ * ( ѵ ) ) + ( sin π v 2 e 1 v Ϣ * ( ȥ ) + cos π v 2 e v Ϣ * ( ѵ ) ) × ( cos π v 2 e v Τ * ( ȥ ) + sin π v 2 e 1 v Τ * ( ѵ ) ) ] 1 2 e [ Ϣ * ( v ȥ + ( 1 v ) ѵ ) × Τ * ( v ȥ + ( 1 v ) ѵ ) + Ϣ * ( ( 1 v ) ȥ + v ѵ ) × Τ * ( ( 1 v ) ȥ + v ѵ ) ]     + 1 2 e [ 2 cos π v 2 sin π v 2 e * ( ( ȥ , ѵ ) ) + [ ( sin π v 2 e 1 v ) 2 + ( sin π v 2 e 1 v ) 2 ] Δ * ( ( ȥ , ѵ ) ) ]
Multiplying (72) by e ρ v and integrating over ( 0 ,   1 ) , we find
0 1 e ρ v   Ϣ * ( ȥ + ѵ 2 ) × Τ * ( ȥ + ѵ 2 ) d v 1 2 e [ ȥ ѵ e ρ v Ϣ * ( ϰ ) × Τ * ( ϰ ) d v + ȥ ѵ e ρ v Ϣ * ( s ) × Τ * ( s ) d v ] + * ( ( ȥ , ѵ ) ) 2 e 0 1 e ρ v 2 cos π v 2   sin π v 2 e d v + Δ * ( ( ȥ , ѵ ) ) 2 e 0 1 e ρ v [ ( sin π v 2 e 1 v ) 2 + ( sin π v 2 e 1 v ) 2 ] d v
1 e ρ ρ 0 1 e ρ v   Ϣ * ( ȥ + ѵ 2 ) × Τ * ( ȥ + ѵ 2 ) α 2 e ( ѵ ȥ ) [ ȥ + α   Ϣ * ( ѵ ) × Τ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) × Τ * ( ȥ ) ] + π e ρ 1 ( e ρ + 1 ) 2 e ( ρ 2 + π 2 ) * ( ( ȥ , ѵ ) ) 2 e + 1 2 e D ( ρ ) Δ * ( ( ȥ , ѵ ) ) 2 e .
Similarly, for Ϣ * ( ϰ ) , we have
1 e ρ ρ   Ϣ * ( ȥ + ѵ 2 ) × Τ * ( ȥ + ѵ 2 ) α 2 e ( ѵ ȥ ) [ ȥ + α   Ϣ * ( ѵ ) × Τ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) × Τ * ( ȥ ) ] + π e ρ 1 ( e ρ + 1 ) 2 e ( ρ 2 + π 2 ) * ( ( ȥ , ѵ ) ) 2 e + 1 2 e D ( ρ ) Δ * ( ( ȥ , ѵ ) ) 2 e .
From (73) and (74), we have
2 [ Ϣ * ( ȥ + ѵ 2 ) × Τ * ( ȥ + ѵ 2 ) ,   Ϣ * ( ȥ + ѵ 2 ) × Τ * ( ȥ + ѵ 2 ) ] p 1 α e ( ѵ ȥ ) [ ȥ + α   Ϣ * ( ѵ ) × Τ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) × Τ * ( ȥ ) ,     ȥ + α   Ϣ * ( ѵ ) × Τ * ( ѵ ) + ѵ α   Ϣ * ( ȥ ) × Τ * ( ȥ ) ] + ρ π e ρ 1 ( e ρ + 1 ) e ( 1 e ρ ) ( ρ 2 + π 2 ) [ * ( ( ȥ , ѵ ) ) ,   * ( ( ȥ , ѵ ) ) ] + ρ e ( 1 e ρ ) D ( ρ ) [ * ( ( ȥ , ѵ ) ) ,   * ( ( ȥ , ѵ ) ) ] ,
where
D ( ρ ) = e ρ 2 ( 8 e 2 8 ρ e 2 + π 2 e 2 + 2 ρ 2 e 2 π 2 e ρ ) 2 ( ρ 2 ) ( ρ 2 4 ρ + π 2 + 4 ) + 8 ρ π 2 e ρ 2 + π 2 + 2 ρ 2 + 8 2 ( ρ + 2 ) ( ρ 2 + 4 ρ + π 2 + 4 ) .
Hence, the required result. □
Remark 6.
From Theorem 6 we can clearly see the following.
If one lays  Ϣ  and  Τ  which are upper left and right exponential trigonometric concave I-V∙Ms on  [ ȥ , ѵ ] ,  then one acquires the following inequality [98]:
2 Ϣ ( ȥ + ѵ 2 ) × Τ ( ȥ + ѵ 2 ) p α e ( ѵ ȥ ) [ ȥ + α Ϣ ( ѵ ) × Τ ( ѵ ) + ѵ α Ϣ ( ȥ ) × Τ ( ȥ ) ] + ρ π e ρ 1 ( e ρ + 1 ) e ( 1 e ρ ) ( ρ 2 + π 2 ) ( ȥ , ѵ ) + ρ e ( 1 e ρ ) D ( ρ ) Δ ( ȥ , ѵ ) .
If  α 1  , that is
lim α 1 ρ = lim α 1 1 α α ( ѵ ȥ ) = 0 , t h e n   lim α 1 1 α e ( 1 e ρ ) = 1 e ( ѵ ȥ ) ,
lim α 1 ρ e ( 1 e ρ ) ( e ρ 2 ( 8 e 2 8 ρ e 2 + π 2 e 2 + 2 ρ 2 e 2 π 2 e ρ ) 2 ( ρ 2 ) ( ρ 2 4 ρ + π 2 + 4 ) + 8 ρ π 2 e ρ 2 + π 2 + 2 ρ 2 + 8 2 ( ρ + 2 ) ( π 2 + 4 ) ) = π 2 π 2 e 2 + 8 2 e ( π 2 + 4 ) ,
lim α 1 ρ π e ρ 1 ( e ρ + 1 ) e ( 1 e ρ ) ( ρ 2 + π 2 ) = 2 π e 2 .
Then, we acquire the following result, which is also a new one:
2 Ϣ ( ȥ + ѵ 2 ) × Τ ( ȥ + ѵ 2 ) p 2 e ( ѵ ȥ ) ȥ ѵ Ϣ ( ϰ ) × Τ ( ϰ ) d ϰ + 2 π e 2 Δ ( ȥ , ѵ ) + π 2 π 2 e 2 + 8 2 e ( π 2 + 4 ) ( ȥ , ѵ ) .
If one lays  α 1  and  Ϣ  and  T  which are upper left and right exponential trigonometric concave I-V∙Ms on  [ ȥ , ѵ ] ,  then one acquires the following inequality [98]:
2 Ϣ ( ȥ + ѵ 2 ) × Τ ( ȥ + ѵ 2 ) p 2 e ( ѵ ȥ ) ȥ ѵ Ϣ ( ϰ ) × Τ ( ϰ ) d ϰ + 2 π e 2 Δ ( ȥ , ѵ ) + π 2 π 2 e 2 + 8 2 e ( π 2 + 4 ) ( ȥ , ѵ ) .
Let  α 1 ,  Ϣ * ( ϰ ) Ϣ * ( ϰ )  and  T * ( ϰ ) T * ( ϰ )  . Then, from Theorem 6 we achieve the Hermite–Hadamard inequality for interval-valued   left and right exponential trigonometric convex mapping, which is also a new one:
2 Ϣ ( ȥ + ѵ 2 ) × Τ ( ȥ + ѵ 2 ) p 2 e ( ѵ ȥ ) ȥ ѵ Ϣ ( ϰ ) × Τ ( ϰ ) d ϰ + 2 π e 2 Δ ( ȥ , ѵ ) + π 2 π 2 e 2 + 8 2 e ( π 2 + 4 ) ( ȥ , ѵ ) .
If  Ϣ * ( ϰ ) = Ϣ * ( ϰ )  and  T * ( ϰ ) T * ( ϰ )  , then, from Theorem 6, we achieve the classical fractional Hermite–Hadamard inequality for   exponential trigonometric convex mapping
2   Ϣ ( ȥ + ѵ 2 ) × Τ ( ȥ + ѵ 2 ) α e ( ѵ ȥ ) [ ȥ + α   Ϣ ( ѵ ) × Τ ( ѵ ) + ѵ α   Ϣ ( ȥ ) × Τ ( ȥ ) ] + ρ π e ρ 1 ( e ρ + 1 ) e ( 1 e ρ ) ( ρ 2 + π 2 ) ( ȥ , ѵ ) + ρ e ( 1 e ρ ) D ( ρ ) Δ ( ȥ , ѵ ) .
Let  α 1 ,  Ϣ * ( ϰ ) = Ϣ * ( ϰ )  and  T * ( ϰ ) T * ( ϰ ) . Then, from Theorem 6, we achieve the classical Hermite–Hadamard inequality for exponential trigonometric convex mapping, see [78]
2 Ϣ ( ȥ + ѵ 2 ) × Τ ( ȥ + ѵ 2 ) 2 e ( ѵ ȥ ) ȥ ѵ Ϣ ( ϰ ) × Τ ( ϰ ) d ϰ + 2 π e 2 Δ ( ȥ , ѵ ) + π 2 π 2 e 2 + 8 2 e ( π 2 + 4 ) ( ȥ , ѵ ) .
Theorem 7.
Let  Ϣ : [ ȥ ,   ѵ ] X C +  be an I-V∙M on  [ ȥ ,   ѵ ]  given by  Ϣ ( ϰ ) = [ Ϣ * ( ϰ ) ,   Ϣ * ( ϰ ) ]  for all  ϰ [ ȥ ,   ѵ ] . If  Ϣ  is a left and right exponential trigonometric convex I-V∙M on  [ ȥ ,   ѵ ]  and  Ϣ L ( [ ȥ ,   ѵ ] , X C + ) , then
e Ϣ ( ȥ + ѵ 2 ) p e 2 [ Ϣ ( 3 ȥ + ѵ 2 ) + Ϣ ( ȥ + 3 ѵ 2 ) ] p 1 α 2 ( 1 e ρ 2 ) [ ȥ + α   Ϣ ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) + α Ϣ ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) + ѵ α Ϣ ( ȥ + ѵ 2 ) ] p ρ 2 ( 1 e ρ 2 ) K ( ρ ) ( Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 + Ϣ ( ȥ + ѵ 2 ) ) p ρ 2 ( 1 e ρ 2 ) ( 1 + e 2 ) K ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
If  Ϣ ( ϰ )  is a left and right exponential trigonometric concave I-V∙M, then
e Ϣ ( ȥ + ѵ 2 ) p e 2 [ Ϣ ( 3 ȥ + ѵ 4 ) + Ϣ ( ȥ + 3 ѵ 4 ) ] p 1 α 2 ( 1 e ρ 2 ) [ ȥ + α Ϣ ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) + α Ϣ ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) + ѵ α Ϣ ( ȥ + ѵ 2 ) ] p ρ 2 ( 1 e ρ 2 ) K ( ρ ) ( Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 + Ϣ ( ȥ + ѵ 2 ) ) p ρ 2 ( 1 e ρ 2 ) ( 1 + e 2 ) K ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 ,
where
K ( ρ ) = 2 ρ + 2 π e ρ + 2 2 + 4 ρ 2 + 4 ρ + π 2 + 4 + 2 π e 1 + 2 e ρ 2 ( 2 + ρ ) ρ 2 4 ρ + π 2 + 4 , ρ = 1 α α ( ѵ ȥ ) , and 1 > α > 0 .
Proof. 
Taking [ ȥ ,   ȥ + ѵ 2 ] , we deduce that
Ϣ ( 3 ȥ + ѵ 4 ) p sin π 4 e Ϣ ( v ȥ + ( 1 v ) ȥ + ѵ 2 ) + cos π 4 e Ϣ ( ( 1 v ) ȥ + v ȥ + ѵ 2 ) .
After simplification, we find that
2 Ϣ ( 3 ȥ + ѵ 4 ) p 2 e [ Ϣ ( v ȥ + ( 1 v ) ȥ + ѵ 2 ) + Ϣ ( ( 1 v ) ȥ + v ȥ + ѵ 2 ) ] .
Therefore, we have
2 Ϣ * ( 3 ȥ + ѵ 4 ) 2 e [ Ϣ * ( v ȥ + ( 1 v ) ȥ + ѵ 2 ) + Ϣ * ( ( 1 v ) ȥ + v ȥ + ѵ 2 ) ] ,
2 Ϣ * ( 3 ȥ + ѵ 4 ) 2 e [ Ϣ * ( v ȥ + ( 1 v ) ȥ + ѵ 2 ) + Ϣ * ( ( 1 v ) ȥ + v ȥ + ѵ 2 ) ] .
Taking Ϣ * ( . ) and multiplying both sides by e ρ v 2 and integrating the obtained result with respect to v from 0 to 1 , we have
0 1 e ρ v 2 Ϣ * ( 3 ȥ + ѵ 4 ) d v   2 e [ 0 1 e ρ v Ϣ * ( v ȥ + ( 1 v ) ȥ + ѵ 2 ) d v + 0 1 e ρ v Ϣ * ( ( 1 v ) ȥ + v ȥ + ѵ 2 ) d v ] .
Let u = v ȥ + ( 1 v ) ȥ + ѵ 2 and ϰ = ( 1 v ) ȥ + v ȥ + ѵ 2 . Then, we have
0 1 e ρ v 2 Ϣ * ( 3 ȥ + ѵ 4 ) d v   2 e 1 ѵ ȥ   ȥ + ѵ 2 ѵ e ( 1 α α ( ȥ + ѵ 2 u ) ) Ϣ * ( u ) d u + 1 ѵ ȥ ȥ + ѵ 2 ѵ e ( 1 α α ( ϰ ȥ ) ) Ϣ * ( ϰ ) d ϰ = 2 e α ѵ ȥ [ ȥ + α   Ϣ * ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) α   Ϣ * ( ȥ ) ] .
Now, taking the right side of Equation (83), we have
0 1 e ρ v 2 Ϣ * ( 3 ȥ + ѵ 2 ) d v = 2 ( 1 e ρ ) ρ Ϣ * ( 3 ȥ + ѵ 4 ) .
From (83) and (84), we deduce that
2 ( 1 e ρ ) ρ Ϣ * ( 3 ȥ + ѵ 4 ) 2 e 1 α ѵ ȥ [ ȥ + α   Ϣ * ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) α   Ϣ * ( ȥ ) ] .
Similarly, for Ϣ * ( . ) , from (85), we have
2 ( 1 e ρ ) ρ Ϣ * ( 3 ȥ + ѵ 4 ) 2 e 1 α ѵ ȥ [ ȥ + α Ϣ * ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) α Ϣ * ( ȥ ) ] .
From (85) and (86), we deduce that
2 ( 1 e ρ ) ρ Ϣ ( 3 ȥ + ѵ 4 ) p 2 e 1 α ѵ ȥ [ ȥ + α Ϣ ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) ] .
For the right side of Equation (81), since Ϣ is a left and right exponential trigonometric convex I-V∙M, then we can deduce that
Ϣ ( v ȥ + ( 1 v ) ȥ + ѵ 2 ) p sin π v 4 e 1 v Ϣ ( ȥ ) + cos π v 4 e v Ϣ ( ȥ + ѵ 2 ) ,
and
Ϣ ( ( 1 v ) ȥ + v ȥ + ѵ 2 ) p cos π v 4 e v Ϣ ( ȥ ) + sin π v 4 e 1 v Ϣ ( ȥ + ѵ 2 )
Adding (88) and (89), we have
Ϣ ( v ȥ + ( 1 v ) ȥ + ѵ 2 ) + Ϣ ( ( 1 v ) ȥ + v ȥ + ѵ 2 ) p [ Ϣ ( ȥ ) + Ϣ ( ȥ + ѵ 2 ) ] [ sin π v 4 e 1 v + cos π v 4 e v ] .
Since Ϣ is I-V∙M, then we have
Ϣ * ( v ȥ + ( 1 v ) ȥ + ѵ 2 ) + Ϣ * ( ( 1 v ) ȥ + v ȥ + ѵ 2 ) [ Ϣ * ( ȥ ) + Ϣ * ( ȥ + ѵ 2 ) ] [ sin π v 4 e 1 v + cos π v 4 e v ] ,   Ϣ * ( v ȥ + ( 1 v ) ȥ + ѵ 2 ) + Ϣ * ( ( 1 v ) ȥ + v ȥ + ѵ 2 ) [ Ϣ * ( ȥ ) + Ϣ * ( ȥ + ѵ 2 ) ] [ sin π v 4 e 1 v + cos π v 4 e v ] .  
Taking Ϣ * ( . ) from (91) and multiplying the inequality by e ρ v 2 , and integrating the resultant with v from 0 to 1 , we have
0 1 e e ρ v 2 Ϣ * ( v ȥ + ( 1 v ) ȥ + ѵ 2   ) d v + 0 1 e e ρ v 2 Ϣ * ( ( 1 v ) ȥ + v ȥ + ѵ 2 ) d v [ Ϣ * ( ȥ ) + Ϣ * ( ȥ + ѵ 2 ) ] 0 1 e e ρ v 2 [ sin π v 4 e 1 v + cos π v 4 e v ] d v , = ( 2 ρ + 2 π e ρ + 2 2 + 4 ρ 2 + 4 ρ + π 2 + 4 + 2 π e 1 + 2 e ρ 2 ( 2 + ρ ) ρ 2 4 ρ + π 2 + 4 ) [ Ϣ * ( ȥ ) + Ϣ * ( ȥ + ѵ 2 ) ] .
In a similar way to the above, for Ϣ * ( . ) we have
0 1 e e ρ v 2 Ϣ * ( v ȥ + ( 1 v ) ȥ + ѵ 2   ) d v + 0 1 e e ρ v 2 Ϣ * ( ( 1 v ) ȥ + v ȥ + ѵ 2 ) d v [ Ϣ * ( ȥ ) + Ϣ * ( ѵ ) ] 0 1 e ρ v [ sin π v 4 e 2 v 2 + cos π v 4 e v 2 ] d v , = ( 2 ρ + 2 π e ρ + 2 2 + 4 ρ 2 + 4 ρ + π 2 + 4 + 2 π e 1 + 2 e ρ 2 ( 2 + ρ ) ρ 2 4 ρ + π 2 + 4 ) [ Ϣ * ( ȥ ) + Ϣ * ( ȥ + ѵ 2 ) ] .
From (92) and (93), we have
0 1 e ρ v Ϣ ( v ȥ + ( 1 v ) ȥ + ѵ 2 ) d v + 0 1 e ρ v Ϣ ( ( 1 v ) ȥ + v ȥ + ѵ 2 ) d v p ( 2 ρ + 2 π e ρ + 2 2 + 4 ρ 2 + 4 ρ + π 2 + 4 + 2 π e 1 + 2 e ρ 2 ( 2 + ρ ) ρ 2 4 ρ + π 2 + 4 ) [ Ϣ ( ȥ ) + Ϣ ( ȥ + ѵ 2 ) ] .
Combining (87) and (94), we have
e 2 Ϣ ( 3 ȥ + ѵ 2 ) p 1 α 2 ( 1 e ρ 2 ) [ ȥ + α Ϣ ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) ] p ρ 2 ( 1 e ρ 2 ) K ( ρ ) ( Ϣ ( ȥ ) + Ϣ ( ȥ + ѵ 2 ) 2 ) ,
where
K ( ρ ) = 2 ρ + 2 π e ρ + 2 2 + 4 ρ 2 + 4 ρ + π 2 + 4 + 2 π e 1 + 2 e ρ 2 ( 2 + ρ ) ρ 2 4 ρ + π 2 + 4 .
Similarly, if we take the interval [ ȥ + ѵ 2 ,   ѵ ] , then, from (38), we find that
e 2 [ Ϣ ( ȥ + 3 ѵ 2 ) ] p 1 α 2 ( 1 e ρ 2 ) [ ( ȥ + ѵ 2 ) + α Ϣ ( ѵ ) + ѵ α Ϣ ( ȥ + ѵ 2 ) ] p ρ 2 ( 1 e ρ 2 ) K ( ρ ) ( Ϣ ( ȥ + ѵ 2 ) + Ϣ ( ѵ ) 2 ) .
Adding (95) and (96), we have
e 2 [ Ϣ ( 3 ȥ + ѵ 2 ) + Ϣ ( ȥ + 3 ѵ 2 ) ]    p 1 α 2 ( 1 e ρ 2 ) [ ȥ + α   Ϣ ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) + α   Ϣ ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) + ѵ α Ϣ ( ȥ + ѵ 2 ) ] p ρ 2 ( 1 e ρ 2 ) K ( ρ ) ( Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 + Ϣ ( ȥ + ѵ 2 ) ) .
To achieve the first and fourth order relations in (81), again by taking
Ϣ ( ȥ + ѵ 2 ) = Ϣ ( 3 ȥ + ѵ 4 + ȥ + 3 ѵ 4 2 ) p sin π 4 e Ϣ ( ȥ ) + cos π 4 e Ϣ ( ѵ ) = 1 2 2 e Ϣ ( ȥ ) + 1 2 2 e Ϣ ( ѵ )
and
Ϣ ( ȥ + ѵ 2 ) = Ϣ ( 3 ȥ + ѵ 4 + ȥ + 3 ѵ 4 2 ) p sin π 4 e Ϣ ( 3 ȥ + ѵ 4 ) + cos π 4 e Ϣ ( ȥ + 3 ѵ 4 ) = 1 2 2 e Ϣ ( 3 ȥ + ѵ 4 ) + 1 2 2 e Ϣ ( ȥ + 3 ѵ 4 ) .
By using the inclusion relation (98) and (99), we obtain the first and fourth inclusions of (81). By combining the resultant inclusion and (97), we obtain the following relation:
e Ϣ ( ȥ + ѵ 2 ) p e 2 [ Ϣ ( 3 ȥ + ѵ 2 ) + Ϣ ( ȥ + 3 ѵ 2 ) ] p 1 α 2 ( 1 e ρ 2 ) [ ȥ + α Ϣ ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) + α Ϣ ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) + ѵ α Ϣ ( ȥ + ѵ 2 ) ] p ρ 2 ( 1 e ρ 2 ) K ( ρ ) ( Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 + Ϣ ( ȥ + ѵ 2 ) ) p ρ 2 ( 1 e ρ 2 ) ( 1 + e 2 ) K ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
Hence, the required result. □
Remark 7.
From Theorem 7 we can clearly see the following.
If one lays  Ϣ  which is an upper left and right exponential trigonometric concave I-V∙M on  [ ȥ , ѵ ] ,  then one acquires the following inequality [98]:
e Ϣ ( ȥ + ѵ 2 ) p e 2 [ Ϣ ( 3 ȥ + ѵ 2 ) Ϣ ( ȥ + 3 ѵ 2 ) ] p 1 α 2 ( 1 e ρ 2 ) [ ȥ + α Ϣ ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) + α Ϣ ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ ( ȥ ) + ѵ α Ϣ ( ȥ + ѵ 2 ) ] p ρ 2 ( 1 e ρ 2 ) K ( ρ ) ( Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 + Ϣ ( ȥ + ѵ 2 ) ) p ρ 2 ( 1 e ρ 2 ) ( 1 + e 2 ) K ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
If  α 1 , that is
lim α 1 ρ = lim α 1 1 α α ( ѵ ȥ ) = 0 , then
lim α 1 ρ 1 e ρ 2 ( 2 ρ + 2 π e ρ + 2 2 + 4 ρ 2 + 4 ρ + π 2 + 4 + 2 π e 1 + 2 e ρ 2 ( 2 + ρ ) ρ 2 4 ρ + π 2 + 4 ) = 4 ( 2 π e 1 + 4 ) π 2 + 4 ,   lim α 1 1 α 2 ( 1 e e ρ 2 ) = 1 ѵ ȥ
Then, we acquire the following result, which is also a new one:
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 2 e 2 [ Ϣ ( 3 ȥ + ѵ 2 ) + Ϣ ( ȥ + 3 ѵ 2 ) ] p 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ p 2 π e 1 + 4 π 2 + 4 ( Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 + Ϣ ( ȥ + ѵ 2 ) ) p 2 π e 1 + 4 π 2 + 4 ( 1 + e 2 ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
If one lays  α 1  and  Ϣ  which is an upper left and right exponential trigonometric concave I-V∙M on  [ ȥ , ѵ ] ,  then one acquires the following inequality [98]:
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 2 e 2 [ Ϣ ( 3 ȥ + ѵ 2 ) + Ϣ ( ȥ + 3 ѵ 2 ) ] p 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ p 2 π e 1 + 4 π 2 + 4 ( Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 + Ϣ ( ȥ + ѵ 2 ) ) p 2 π e 1 + 4 π 2 + 4 ( 1 + e 2 ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
Let  α 1  and  Ϣ * ( ϰ ) Ϣ * ( ϰ )  . Then, from Theorem 7, we achieve the Hermite–Hadamard inequality for interval-valued   left and right exponential trigonometric convex mapping, which is also a new one:
e 2 Ϣ ( ȥ + ѵ 2 ) p 1 2 e 2 [ Ϣ ( 3 ȥ + ѵ 2 ) + Ϣ ( ȥ + 3 ѵ 2 ) ] p 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ p 2 π e 1 + 4 π 2 + 4 ( Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 + Ϣ ( ȥ + ѵ 2 ) ) p 2 π e 1 + 4 π 2 + 4 ( 1 + e 2 ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
If  Ϣ * ( ϰ ) = Ϣ * ( ϰ ) , then, from Theorem 7, we arrive at the classical fractional Hermite–Hadamard inequality for   exponential trigonometric convex mapping:
e Ϣ ( ȥ + ѵ 2 ) e 2 [ Ϣ ( 3 ȥ + ѵ 2 ) + Ϣ ( ȥ + 3 ѵ 2 ) ] 1 α 2 ( 1 e ρ 2 ) [ ȥ + α   Ϣ ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) + α   Ϣ ( ѵ ) + ( ȥ + ѵ 2 ) α   Ϣ ( ȥ ) + ѵ α   Ϣ ( ȥ + ѵ 2 ) ] ρ 2 ( 1 e ρ 2 ) K ( ρ ) ( Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 + Ϣ ( ȥ + ѵ 2 ) ) ρ 2 ( 1 e ρ 2 ) ( 1 + e 2 ) K ( ρ ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
Let  α 1  and  Ϣ * ( ϰ ) = Ϣ * ( ϰ ) . Then, from Theorem 7, we arrive at the classical Hermite–Hadamard inequality for exponential trigonometric convex mapping, see [78].
e 2 Ϣ ( ȥ + ѵ 2 ) 1 2 e 2 [ Ϣ ( 3 ȥ + ѵ 2 ) + Ϣ ( ȥ + 3 ѵ 2 ) ] 1 ѵ ȥ ȥ ѵ Ϣ ( ϰ ) d ϰ 2 π e 1 + 4 π 2 + 4 ( Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 + Ϣ ( ȥ + ѵ 2 ) ) 2 π e 1 + 4 π 2 + 4 ( 1 + e 2 ) Ϣ ( ȥ ) + Ϣ ( ѵ ) 2 .
To validate Theorem 7, we provide the following nontrivial example:
Example 3.
Let  α = 1 3 ,   ϰ [ 0 , 1 ] , and the I-V∙M  Ϣ : [ ȥ ,   ѵ ] = [ 0 ,   1 ] X C + ,  defined by
Ϣ ( ϰ ) = [ 2 ϰ 4 , 4 ϰ 4 ] .
Since left and right end point mappings  Ϣ * ( ϰ ) = 2 ϰ 4 ,   Ϣ * ( ϰ ) = 4 ϰ 4 , are exponential trigonometric convex mappings then  Ϣ ( ϰ )  is an exponential trigonometric convex I-V∙M. We can clearly see that  Ϣ L ( [ ȥ ,   ѵ ] , X C + )  and
e Ϣ * ( ȥ + ѵ 2 ) = e 8
e Ϣ * ( ȥ + ѵ 2 ) = e 4
e 2 [ Ϣ * ( 3 ȥ + ѵ 2 ) + Ϣ * ( ȥ + 3 ѵ 2 ) ] = e 2 41 64
e 2 [ Ϣ * ( 3 ȥ + ѵ 2 ) + Ϣ * ( ȥ + 3 ѵ 2 ) ] = e 2 41 32
1 α 2 ( 1 e ρ 2 ) [ ȥ + α Ϣ * ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) + α Ϣ * ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ * ( ȥ ) + ѵ α   Ϣ * ( ȥ + ѵ 2 ) ] = 1 1 e 1 { 0 1 2 e 2 ( 1 2 ϰ )   (   2 ϰ 4 ) d ϰ + 0 1 2 e 2 ϰ ( 2 ϰ 4 ) d ϰ } + 1 1 e 1 { 1 2 1 e 2 ( 1 ϰ )   (   2 ϰ 4 ) d ϰ + 1 2 1 e 2 ( ϰ 1 2 ) ( 2 ϰ 4 ) d ϰ } = 1 1 e 1 { 3 e 2 121 e 1 8 + 2 }
1 α 2 ( 1 e ρ 2 ) [ ȥ + α Ϣ * ( ȥ + ѵ 2 ) + ( ȥ + ѵ 2 ) + α Ϣ * ( ѵ ) + ( ȥ + ѵ 2 ) α Ϣ * ( ȥ ) + ѵ α   Ϣ * ( ȥ + ѵ 2 ) ] = 1 1 e 1 { 0 1 2 e 2 ( 1 2 ϰ )   (   4 ϰ 4 ) d ϰ + 0 1 2 e 2 ϰ ( 4 ϰ 4 ) d ϰ } + 1 1 e 1 { 1 2 1 e 2 ( 1 ϰ )   (   4 ϰ 4 ) d ϰ + 1 2 1 e 2 ( ϰ 1 2 ) ( 4 ϰ 4 ) d ϰ } = 2 1 e 1 { 3 e 2 121 e 1 8 + 2 } .
ρ 2 ( 1 e ρ 2 ) K ( ρ ) ( Ϣ * ( ȥ ) + Ϣ * ( ѵ ) 2 + Ϣ * ( ȥ + ѵ 2 ) ) = 9 8 ( 1 e 1 ) ( 6 + 2 π e 2 16 + π 2 + 2 e 1 π )
ρ 2 ( 1 e ρ 2 ) K ( ρ ) ( Ϣ * ( ȥ ) + Ϣ * ( ѵ ) 2 + Ϣ * ( ȥ + ѵ 2 ) ) = 9 4 ( 1 e 1 ) ( 6 + 2 π e 2 16 + π 2 + 2 e 1 π )
ρ 2 ( 1 e ρ 2 ) ( 1 + e 2 ) K ( ρ ) Ϣ * ( ȥ ) + Ϣ * ( ѵ ) 2 = 1 1 e 1 ( 1 + e 2 ) ( 6 + 2 π e 2 16 + π 2 + 2 e 1 π )
ρ 2 ( 1 e ρ 2 ) ( 1 + e 2 ) K ( ρ ) Ϣ * ( ȥ ) + Ϣ * ( ѵ ) 2 = 2 1 e 1 ( 1 + e 2 ) ( 6 + 2 π e 2 16 + π 2 + 2 e 1 π ) .
That is
[ e 8 , e 4 ] p [ e 2 41 64 , e 2 41 32 ] p [ 1 1 e 1     { 3 e 2 121 e 1 8 + 2 } , 2 1 e 1 { 3 e 2 121 e 1 8 + 2 } ] p [ 9 8 ( 1 e 1 ) ( 6 + 2 π e 2 16 + π 2 + 2 e 1 π ) , 9 4 ( 1 e 1 ) ( 6 + 2 π e 2 16 + π 2 + 2 e 1 π ) ] p [ 1 1 e 1 ( 1 + e 2 ) ( 6 + 2 π e 2 16 + π 2 + 2 e 1 π ) , 2 1 e 1 ( 1 + e 2 ) ( 6 + 2 π e 2 16 + π 2 + 2 e 1 π ) ] .
Hence, Theorem 7 is verified.

6. Conclusions

This study discusses some fundamental properties and introduces the concepts of left and right exponential trigonometric interval-valued convex mappings. Furthermore, by utilizing the idea of fractional integrals having exponential kernels, we established some novel Hermite–Hadamard-type inequalities and proved certain conclusions for midpoint- and Pachpatte-type inequalities. Further research is necessary in this important area of interval-valued analysis that includes fractional integral operators. By utilizing the -integral, we plan to investigate the integral inequalities of fuzzy-interval-valued functions and some applications in interval optimizations.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, M.S.S. and A.C.; formal analysis, M.S.S.; investigation, M.B.K. and A.C.; resources, M.S.S. and A.C.; data curation, A.C.; writing—original draft preparation, M.B.K.; writing—review and editing, M.B.K., A.C. and M.S.S.; visualization, M.B.K.; supervision, M.B.K. and N.A.; project administration, M.B.K., A.C. and N.A. All authors have read and agreed to the published version of the manuscript.

Funding

The research was funded by the University of Oradea, Romania. The researchers also would like to acknowledge the Deanship of Scientific Research, Taif University, Saudi Arabia for funding this work.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad 44000, Pakistan. The research was funded by the University of Oradea, Romania. The researchers also would like to acknowledge the Deanship of Scientific Research, Taif University, Saudi Arabia for funding this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Fejér, L. Uberdie Fourierreihen, II. Math. Naturwiss. Anz. Ungar Akad. Wiss. 1906, 24, 369–390. [Google Scholar]
  2. Bombardelli, M.; Varošanec, S. Properties of h-convex functions related to the Hermite–Hadamard–Fejér inequalities. Comput. Math. Appl. 2009, 58, 1869–1877. [Google Scholar] [CrossRef] [Green Version]
  3. Iscan, I. Some new Hermite–Hadamard type inequalities for s-geometrically convex functions and their applications. arXiv 2014, arXiv:1305.6601. [Google Scholar]
  4. Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite–Hadamard inequalities for h-preinvex functions. Filomat 2014, 24, 1463–1474. [Google Scholar] [CrossRef]
  5. Latif, M.A.; Alomari, M. On Hadmard-type inequalities for h-convex functions on the co-ordinates. Int. J. Math. Anal. 2009, 3, 1645–1656. [Google Scholar]
  6. Iscan, I. Hermite–Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  7. Tseng, K.L.; Yang, G.S.; Hsu, K.C. Some inequalities for differentiable mappings and applications to Fejér inequality and weighted trapezoidal formula. Taiwan J. Math. 2011, 15, 1737–1747. [Google Scholar] [CrossRef]
  8. Dragomir, S.S. Inequalities of Hermite–Hadamard type for h-convex functions on linear spaces. Proyecciones 2015, 34, 323–341. [Google Scholar] [CrossRef]
  9. Zhao, T.H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
  10. Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
  11. Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. RACSAM Rev. R Acad. A 2022, 116, 53. [Google Scholar] [CrossRef]
  12. Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  13. Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
  14. Chu, Y.M.; Wang, G.D.; Zhang, X.H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 2011, 284, 53–663. [Google Scholar] [CrossRef]
  15. Chu, Y.M.; Xia, W.F.; Zhang, X.H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 2012, 105, 412–442. [Google Scholar] [CrossRef] [Green Version]
  16. Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  17. Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
  18. Wang, F.Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
  19. Chu, Y.M.; Siddiqui, M.K.; Nasir, M. On topological co-indices of polycyclic tetrathiafulvalene and polycyclic oragano silicon dendrimers. Polycycl. Aromat. Compd. 2022, 42, 2179–2197. [Google Scholar] [CrossRef]
  20. Chu, Y.M.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K.; Muhammad, M.H. Topological properties of polycyclic aromatic nanostars dendrimers. Polycycl. Aromat. Compd. 2022, 42, 1891–1908. [Google Scholar] [CrossRef]
  21. Chu, Y.M.; Numan, M.; Butt, S.I.; Siddiqui, M.K.; Ullah, R.; Cancan, M.; Ali, U. Degree-based topological aspects of polyphenylene nanostructures. Polycycl. Aromat. Compd. 2022, 42, 2591–2606. [Google Scholar] [CrossRef]
  22. Chu, Y.M.; Muhammad, M.H.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K. Topological study of polycyclic graphite carbon nitride. Polycycl. Aromat. Compd. 2022, 42, 3203–3215. [Google Scholar] [CrossRef]
  23. Iscan, I. Hermite–Hadamard–Fejér type inequalities for convex functions via fractional integrals. arXiv 2015, arXiv:1404.7722. [Google Scholar]
  24. Iscan, I.; Wu, S. Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
  25. Iscan, I.; Kunt, M.; Yazici, N. Hermite–Hadamard–Fejér type inequalities for harmonically convex functions via fractional integrals. New Trends Math. Sci. 2016, 4, 239–253. [Google Scholar] [CrossRef]
  26. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
  27. Iscan, I. Generalization of different type integral inequalities for s-convex functions via fractional integrals. Appl. Anal. 2014, 93, 1846–1862. [Google Scholar] [CrossRef] [Green Version]
  28. Noor, M.A.; Cristescu, G.; Awan, M.U. Generalized fractional Hermite–Hadamard inequalities for twice differentiable s-convex functions. Filomat 2015, 29, 807–815. [Google Scholar] [CrossRef]
  29. Wang, J.R.; Li, X.Z.; Feckan, M.; Zhou, Y. Hermite–Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity. Appl. Anal. 2013, 92, 2241–2253. [Google Scholar] [CrossRef]
  30. Zhao, T.H.; Bhayo, B.A.; Chu, Y.M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
  31. Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  32. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
  33. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Monotonicity and convexity involving generalized elliptic integral of the first kind. RACSAM Rev. R Acad. A 2021, 115, 46. [Google Scholar] [CrossRef]
  34. Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  35. Zhao, T.H.; He, Z.Y.; Chu, Y.M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
  36. Zhao, T.H.; Wang, M.K.; Chu, Y.M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
  37. Khan, M.B.; Zaini, H.G.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities. Fractal Fract. 2022, 6, 679. [Google Scholar] [CrossRef]
  38. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Noor, M.A.; Soliman, M.S. Perturbed Mixed Variational-Like Inequalities and Auxiliary Principle Pertaining to a Fuzzy Environment. Symmetry 2022, 14, 2503. [Google Scholar] [CrossRef]
  39. Khan, M.B.; Zaini, H.G.; Macías-Díaz, J.E.; Soliman, M.S. Up and Down-Pre-Invex Fuzzy-Number Valued Mappings and Some Certain Fuzzy Integral Inequalities. Axioms 2023, 12, 1. [Google Scholar] [CrossRef]
  40. Khan, M.B.; Othman, H.A.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Math. 2023, 8, 6777–6803. [Google Scholar] [CrossRef]
  41. Zhao, D.; Chu, Y.M.; Siddiqui, M.K.; Ali, K.; Nasir, M.; Younas, M.T.; Cancan, M. On reverse degree based topological indices of polycyclic metal organic network. Polycycl. Aromat. Compd. 2022, 42, 4386–4403. [Google Scholar] [CrossRef]
  42. Ibrahim, M.; Saeed, T.; Algehyne, E.A.; Alsulami, H.; Chu, Y.M. Optimization and effect of wall conduction on natural convection in a cavity with constant temperature heat source: Using lattice Boltzmann method and neural network algorithm. J. Therm. Anal. Calorim. 2021, 144, 2449–2463. [Google Scholar] [CrossRef]
  43. Ibrahim, M.; Berrouk, A.S.; Algehyne, E.A.; Saeed, T.; Chu, Y.M. Numerical evaluation of exergy efficiency of innovative turbulators in solar collector filled with hybrid nanofluid. J. Therm. Anal. Calorim. 2021, 145, 1559–1574. [Google Scholar] [CrossRef]
  44. Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
  45. Chalco-Cano, Y.; Rufián-Lizana, A.; Román-Flores, H.; Jiménez-Gamero, M.D. Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 2013, 219, 49–67. [Google Scholar] [CrossRef]
  46. Costa, T.M.; Chalco-Cano, Y.; Lodwick, W.A.; Silva, G.N. Generalized interval vector spaces and interval optimization. Inf. Sci. 2015, 311, 74–85. [Google Scholar] [CrossRef]
  47. Osuna-Gómez, R.; Chalco-Cano, Y.; Hernández-Jiménez, B.; Ruiz-Garzón, G. Optimality conditions for generalized differentiable interval-valued functions. Inf. Sci. 2015, 321, 136–146. [Google Scholar] [CrossRef]
  48. Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Sets Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
  49. Zhao, T.H.; Shi, L.; Chu, Y.M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. RACSAM Rev. R Acad. A. 2020, 114, 96. [Google Scholar] [CrossRef]
  50. Zhao, T.H.; Zhou, B.C.; Wang, M.K.; Chu, Y.M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef] [Green Version]
  51. Zhao, T.H.; Wang, M.K.; Zhang, W.; Chu, Y.M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef] [Green Version]
  52. Chu, Y.M.; Zhao, T.H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
  53. Qian, W.M.; Chu, H.H.; Wang, M.K.; Chu, Y.M. Sharp inequalities for the Toader mean of order −1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
  54. Zhao, T.H.; Chu, H.H.; Chu, Y.M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
  55. Khan, M.B.; Santos-García, G.; Budak, H.; Treanțǎ, S.; Soliman, M.S. Some new versions of Jensen, Schur and Her-mite-Hadamard type inequalities for (𝒑, 𝕵)-convex fuzzy-interval-valued functions. AIMS Math. 2023, 8, 7437–7470. [Google Scholar] [CrossRef]
  56. Khan, M.B.; Othman, H.A.; Voskoglou, M.G.; Abdullah, L.; Alzubaidi, A.M. Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings. Mathematics 2023, 11, 550. [Google Scholar] [CrossRef]
  57. Khan, M.B.; Rakhmangulov, A.; Aloraini, N.; Noor, M.A.; Soliman, M.S. Generalized Harmonically Convex Fuzzy-Number-ValuedMappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities. Mathematics 2023, 11, 656. [Google Scholar] [CrossRef]
  58. Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down ℏ-Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. [Google Scholar] [CrossRef]
  59. Chalco-Cano, Y.; Flores-Franulic, A.; Román-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
  60. Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
  61. Costa, T.M.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  62. Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued functions. J. Inequal. Appl. 2018, 2018, 302. [Google Scholar] [CrossRef] [Green Version]
  63. Zhao, D.F.; Ye, G.J.; Liu, W.; Torres, M. Some inequalities for interval-valued functions on time scales. Soft Comput. 2018, 23, 6005–6015. [Google Scholar] [CrossRef] [Green Version]
  64. An, Y.R.; Ye, G.J.; Zhao, D.F.; Liu, W. Hermite–Hadamard type inequalities for interval (h1, h2)-convex functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef] [Green Version]
  65. Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite–Hadamard type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2019, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
  66. Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  67. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  68. Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
  69. Ibrahim, M.; Berrouk, A.S.; Algehyne, E.A.; Saeed, T.; Chu, Y.M. Energetic and exergetic analysis of a new circular micro-heat sink containing nanofluid: Applicable for cooling electronic equipment. J. Therm. Anal. Calorim. 2021, 145, 1547–1557. [Google Scholar] [CrossRef]
  70. Ibrahim, M.; Saeed, T.; Algehyne, E.A.; Khan, M.; Chu, Y.M. The effects of L-shaped heat source in a quarter-tube enclosure filled with MHD nanofluid on heat transfer and irreversibilities, using LBM: Numerical data, optimization using neural network algorithm (ANN). J. Therm. Anal. Calorim. 2021, 144, 2435–2448. [Google Scholar] [CrossRef]
  71. Ibrahim, M.; Saleem, S.; Chu, Y.M.; Ullah, M.; Heidarshenas, B. An investigation of the exergy and first and second laws by two-phase numerical simulation of various nanopowders with different diameter on the performance of zigzag-wall micro-heat sink (ZZW-MHS). J. Therm. Anal. Calorim. 2021, 144, 1611–1621. [Google Scholar] [CrossRef]
  72. Madhukesh, J.K.; Kumar, R.N.; Gowda, R.P.; Prasannakumara, B.C.; Ramesh, G.K.; Khan, M.I.; Khan, S.U.; Chu, Y.M. Numerical simulation of AA7072-AA7075/ water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach. J. Mol. Liq. 2021, 335, 116103. [Google Scholar] [CrossRef]
  73. Li, J.; Alawee, W.H.; Rawa, M.J.; Dhahad, H.A.; Chu, Y.M.; Issakhov, A.; Abu-Hamdeh, N.H.; Hajizadeh, M.R. Heat recovery application of nanomaterial with existence of turbulator. J. Mol. Liq. 2021, 326, 115268. [Google Scholar] [CrossRef]
  74. Chu, Y.M.; Hajizadeh, M.R.; Li, Z.; Bach, Q.V. Investigation of nano powders influence on melting process within a storage unit. J. Mol. Liq. 2020, 318, 114321. [Google Scholar] [CrossRef]
  75. Chu, Y.M.; Yadav, D.; Shafee, A.; Li, Z.; Bach, Q.V. Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J. Mol. Liq. 2020, 319, 114121. [Google Scholar] [CrossRef]
  76. Chu, Y.M.; Ibrahim, M.; Saeed, T.; Berrouk, A.S.; Algehyne, E.A.; Kalbasi, R. Examining rheological behavior of MWCNT-TiO2/5W40 hybrid nanofluid based on experiments and RSM/ANN modeling. J. Mol. Liq. 2021, 333, 115969. [Google Scholar] [CrossRef]
  77. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  78. Kadakal, M.; Iscan, I.; Agarwal, P. Exponential trigonometric convex function and Hermite-Hadamard type inequalities. Math. Slovaca 2021, 71, 43–56. [Google Scholar] [CrossRef]
  79. Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications. Fuzzy Sets Syst. 1990, 35, 241–249. [Google Scholar] [CrossRef]
  80. Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic, Volume 295 of Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
  81. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  82. Aubin, J.P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
  83. Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990. [Google Scholar]
  84. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
  85. Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
  86. Zhou, T.; Yuan, Z.; Du, T. On the fractional integral inclusions having exponential kernels for interval-valued convex functions. Math. Sci. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
  87. Ullah, N.; Khan, M.B.; Aloraini, N.; Treanțǎ, S. Some New Estimates of Fixed Point Results under Multi-Valued Mappings in G-Metric Spaces with Application. Symmetry 2023, 15, 517. [Google Scholar] [CrossRef]
  88. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals. Mathematics 2022, 10, 3251. [Google Scholar] [CrossRef]
  89. Khan, M.B.; Treanțǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities. Symmetry 2022, 14, 1901. [Google Scholar] [CrossRef]
  90. Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
  91. Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
  92. Ibrahim, M.; Saeed, T.; Hekmatifar, M.; Sabetvand, R.; Chu, Y.M.; Toghraie, D.; Iran, T.G. The atomic interactions between histone and 3LPT protein using an equilibrium molecular dynamics simulation. J. Mol. Liq. 2021, 328, 115397. [Google Scholar] [CrossRef]
  93. Qureshi, M.Z.A.; Bilal, S.; Chu, Y.M.; Farooq, A.B. Physical impact of nano-layer on nano-fluid flow due to dispersion of magnetized carbon nano-materials through an absorbent channel with thermal analysis. J. Mol. Liq. 2021, 325, 115211. [Google Scholar] [CrossRef]
  94. Ibrahim, M.; Saeed, T.; Hekmatifar, M.; Sabetvand, R.; Chu, Y.M.; Toghraie, D. Investigation of dynamical behavior of 3LPT protein-water molecules interactions in atomic structures using molecular dynamics simulation. J. Mol. Liq. 2021, 329, 115615. [Google Scholar] [CrossRef]
  95. Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Abusorrah, A.M.; Issakhov, A.; Abu-Hamhed, N.H.; Shafee, A.; Chu, Y.M. Nanomaterial transportation and exergy loss modeling incorporating CVFEM. J. Mol. Liq. 2021, 330, 115591. [Google Scholar] [CrossRef]
  96. Wang, T.; Almarashi, A.; Al-Turki, Y.A.; Abu-Hamdeh, N.H.; Hajizadeh, M.R.; Chu, Y.M. Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Mol. Liq. 2021, 329, 115052. [Google Scholar] [CrossRef]
  97. Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Issakhov, A.; Chu, Y.M. Nanoparticles for phase change process of water utilizing FEM. J. Mol. Liq. 2021, 334, 116096. [Google Scholar] [CrossRef]
  98. Zhou, T.C.; Du, T.S. Certain fractional integral inclusions pertaining to interval-valued exponential trigonometric convex functions. J. Math. Inequal. 2022. [Google Scholar]
  99. Qi, Y.; Wen, Q.; Li, G.; Xiao, K.; Wang, S. Discrete Hermite-Hadamard-type inequalities for (s, m)-convex function. Fractals 2022, 30, 2250160. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Cătaş, A.; Aloraini, N.; Soliman, M.S. Some New Versions of Fractional Inequalities for Exponential Trigonometric Convex Mappings via Ordered Relation on Interval-Valued Settings. Fractal Fract. 2023, 7, 223. https://0-doi-org.brum.beds.ac.uk/10.3390/fractalfract7030223

AMA Style

Khan MB, Cătaş A, Aloraini N, Soliman MS. Some New Versions of Fractional Inequalities for Exponential Trigonometric Convex Mappings via Ordered Relation on Interval-Valued Settings. Fractal and Fractional. 2023; 7(3):223. https://0-doi-org.brum.beds.ac.uk/10.3390/fractalfract7030223

Chicago/Turabian Style

Khan, Muhammad Bilal, Adriana Cătaş, Najla Aloraini, and Mohamed S. Soliman. 2023. "Some New Versions of Fractional Inequalities for Exponential Trigonometric Convex Mappings via Ordered Relation on Interval-Valued Settings" Fractal and Fractional 7, no. 3: 223. https://0-doi-org.brum.beds.ac.uk/10.3390/fractalfract7030223

Article Metrics

Back to TopTop