Next Article in Journal
Optimal Control of a Cell-to-Cell Fractional-Order Model with Periodic Immune Response for HCV
Next Article in Special Issue
Some Hermite–Hadamard-Type Fractional Integral Inequalities Involving Twice-Differentiable Mappings
Previous Article in Journal
Spectral Clustering Effect in Software Development Effort Estimation
Previous Article in Special Issue
On Existence Theorems to Symmetric Functional Set-Valued Differential Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Initial Coefficient Estimates and Fekete–Szegö Inequalities for New Families of Bi-Univalent Functions Governed by (pq)-Wanas Operator

by
Abbas Kareem Wanas
1,† and
Luminiţa-Ioana Cotîrlǎ
2,*,†
1
Department of Mathematics, College of Science, University of Al-Qadisiyah, Al-Qadisiyah 58001, Iraq
2
Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Submission received: 1 October 2021 / Revised: 29 October 2021 / Accepted: 1 November 2021 / Published: 8 November 2021
(This article belongs to the Special Issue Symmetry in Functional Equations and Analytic Inequalities II)

Abstract

:
The motivation of the present article is to define the ( p q ) -Wanas operator in geometric function theory by the symmetric nature of quantum calculus. We also initiate and explore certain new families of holormorphic and bi-univalent functions A E ( λ , σ , δ , s , t , p , q ; ϑ ) and S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) which are defined in the unit disk U associated with the ( p q ) -Wanas operator. The upper bounds for the initial Taylor–Maclaurin coefficients and Fekete–Szegö-type inequalities for the functions in these families are obtained. Furthermore, several consequences of our results are pointed out based on the various special choices of the involved parameters.

1. Introduction

Indicate by A the family of all holomorphicfunctions of the form
f ( z ) = z + k = 2 b k z k
in the open unit disk U = { z C : | z | < 1 } .
We also denote by T the subfamily of A consisting of functions which are also univalent in U.
The famous Koebe one-quarter theorem [1] ensures that the image of U under each univalent function f A contains a disk of radius 1 4 . Furthermore, each function f T has an inverse f 1 defined by f 1 ( f ( z ) ) = z and
f ( f 1 ( w ) ) = w , | w | < r 0 ( f ) , r 0 ( f ) 1 4
where
g ( w ) = f 1 ( w ) = w b 2 w 2 + ( 2 b 2 2 b 3 ) w 3 ( 5 b 2 3 5 b 2 b 3 + b 4 ) w 4 + .
A function f A is named bi-univalent in U if both f and f 1 are univalent in U. The family of all bi-univalent functions in U is denoted by E.
From the work of Srivastava et al. [2], we choose to recall the following examples of functions in the family E:
z 1 z , log ( 1 z ) and 1 2 log 1 + z 1 z .
In fact, Srivastava et al. [2] have actually revived the study of analytic and bi-univalent functions in the recent years. This was followed by works such as those by Frasin and Aouf [3], Ali et al. [4], Bulut et al. [5], Srivastava and et al. [6] and others (see, for example, [7,8,9,10,11,12,13,14,15]).
We notice that the family E is not empty. However, the Koebe function is not a member of E .
The problem to obtain the general coefficient bounds on the Taylor–Maclaurin coefficients
| b n | ( n N ; n 3 )
for functions f E is still not completely addressed for many of the subfamilies of E. The origin of the Fekete-Szegö functional b 3 η b 2 2 for f T was in the disproof [16] by Fekete and Szegö of the Littlewood-Paley conjecture that the coefficients of odd univalent functions are bounded by unity. Researchers in the Theory of Geometric Function have recently obtained remarkable results on this topic (see, for example, [17,18,19,20,21]).
With a view to recalling the principle of subordination between holomorphic functions, let the functions f and g be holomorphic in U. The function f is subordinate to g, if there exists a Schwarz function ω , which is analytic in U with
ω ( 0 ) = 0 and | ω ( z ) | < 1 ( z U ) ,
such that
f ( z ) = g ω ( z ) .
The subordination is denoted by
f g or f ( z ) g ( z ) ( z U ) .
It is well known that (see [22]), if the function g is univalent in U, then
f g ( z U ) f ( 0 ) = g ( 0 ) and f ( U ) g ( U ) .
For 0 < q < p 1 , the ( p , q ) -derivative operator or ( p , q ) -difference operator for a function f is defined by
D p , q f ( z ) = f ( p z ) f ( q z ) ( p q ) z ( z U * = U \ 0 ) ,
and
D p , q f ( 0 ) = f ( 0 ) .
For more details on the concepts of ( p , q ) -calculus see [20,23,24,25,26,27].
For function f A , we deduce that
D p , q f ( z ) = 1 + k = 2 [ k ] p , q b k z k 1 ,
where the ( p , q ) -bracket number or twin-basic [ k ] p , q is given by
[ k ] p , q = p k q k p q = p k 1 + p k 2 q + p k 3 q 2 + + p q k 2 + q k 1 ( p q ) ,
which is a natural generalization of the q-number, that is, we have (see [28,29,30])
lim p 1 [ k ] p , q = [ k ] q = 1 q k 1 q .
It is clear that the notation [ k ] p , q is symmetric, that is,
[ k ] p , q = [ k ] q , p .
In 2019, Wanas [31] introduced the following operator, which can also be called Wanas operator W s , t σ , δ : A A defined by
W s , t σ , δ f = z + k = 2 τ = 1 σ σ τ ( 1 ) τ + 1 s τ + k t τ s τ + t τ δ b k z k ,
where s R , t R 0 + with s + t > 0 , k 1 , σ N and δ N 0 .
Now, for f A , we define the ( p q ) -difference Wanas operator as given below
W 0 , 1 , p , q 1 , 0 f ( z ) = f ( z ) W 0 , 1 , p , q 1 , 1 f ( z ) = z W p , q f ( z ) W 0 , 1 , p , q 1 , δ f ( z ) = z W p , q ( W p , q δ 1 f ( z ) ) W s , t , p , q σ , δ f ( z ) = z + k = 2 [ Ψ k ( σ , s , t ) ] p , q [ Ψ 1 ( σ , s , t ) ] p , q δ b k z k
where
W p , q f ( z ) = z + k = 2 p k q k p q b k z k , W p , q δ 1 f ( z ) = z + k = 2 p k q k p q δ 1 b k z k ,
Ψ k ( σ , s , t ) = τ = 1 σ σ τ ( 1 ) τ + 1 s τ + k t τ , Ψ 1 ( σ , s , t ) = τ = 1 σ σ τ ( 1 ) τ + 1 s τ + t τ ,
s R , t R 0 + with s + t > 0 , k 1 , σ N , δ N 0 , 0 < q < p 1 and z U .
Remark 1.
The operator W s , t , p , q σ , δ is a generalization of several known operators studied in earlier investigations which are being recalled below.
1. 
For p = σ = t = 1 , δ = ν , ( ν ) > 1 and s C \ Z 0 , the operator W s , t , p , q σ , δ reduces to the q-Srivastava–Attiya operator J q , s ν [32];
2. 
For p = σ = t = 1 , δ = 1 and s > 1 , the operator W s , t , p , q σ , δ reduces to the q-Bernardi operator [33];
3. 
For p = σ = s = t = 1 and δ = 1 , the operator W s , t , p , q σ , δ reduces to the q-Libera operator [33];
4. 
For s = 0 and p = σ = t = 1 , the operator W s , t , p , q σ , δ reduces to the q-Sălăgean operator [34];
5. 
For q 1 and p = σ = 1 , the operator W s , t , p , q σ , δ reduces to the operator I s , t δ that was introduced and studied by Swamy [35];
6. 
For q 1 , p = σ = t = 1 , δ = ν , ( ν ) > 1 and s C \ Z 0 , the operator W s , t , p , q σ , δ reduces to the operator J s ν that was investigated by Srivastava and Attiya [36]. The operator J s ν is now popularly known in the literature as the Srivastava–Attiya operator;
7. 
For q 1 , p = σ = t = 1 and s > 1 , the operator W s , t , p , q σ , δ reduces to the operator I s δ that was investigated by Cho and Srivastava [37];
8. 
For q 1 , p = σ = s = t = 1 , the operator W s , t , p , q σ , δ reduces to the operator I δ that was considered by Uralegaddi and Somanatha [38];
9. 
For q 1 , p = σ = s = t = 1 , δ = ξ and ξ > 0 , the operator W s , t , p , q σ , δ reduces to the operator I ξ that was introduced by Jung et al. [39]. The operator I ξ is the Jung–Kim–Srivastava integral operator;
10. 
For q 1 , p = σ = t = 1 , δ = 1 and s > 1 , the operator W s , t , p , q σ , δ reduces to the Bernardi operator [40];
11. 
For q 1 , s = 0 , p = σ = t = 1 and δ = 1 , the operator W s , t , p , q σ , δ reduces to the Alexander operator [41];
12. 
For q 1 , p = σ = 1 , s = 1 t and t 0 , the operator W s , t , p , q σ , δ reduces to the operator D t δ that was given by Al-Oboudi [42];
13. 
For q 1 , p = σ = 1 , s = 0 and t = 1 , the operator W s , t , p , q σ , δ reduces to the operator S δ that was considered by Sălăgean [43].
We shall need the following Lemma in our investigation.
Lemma 1
([44], p. 41 and [45], p. 41). Let the function x P be given by the following series:
x ( z ) = 1 + x 1 z + x 2 z 2 + ( z U ) .
The sharp estimate given by
| x n | 2 ( n N )
holds true.

2. A Set of Main Results

Indicate by ϑ ( z ) the holomorphic function with positive real part in U such that
ϑ ( 0 ) = 1 , ϑ ( 0 ) > 0
and ϑ ( U ) is symmetric with respect to the real axis, which is of the type:
ϑ ( z ) = 1 + B 1 z + B 2 z 2 + B 3 z 3 +
where B 1 > 0 .
Using the ( p q ) -Wanas operator, we now provide the following subfamilies of holomorphic and bi-univalent functions.
Definition 1.
For 0 λ 1 , a function f E is said to be in the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) if it fulfills the subordinations:
( 1 λ ) z W s , t , p , q σ , δ f ( z ) W s , t , p , q σ , δ f ( z ) + λ 1 + z W s , t , p , q σ , δ f ( z ) W s , t , p , q σ , δ f ( z ) ϑ ( z )
and
( 1 λ ) w W s , t , p , q σ , δ g ( w ) W s , t , p , q σ , δ g ( w ) + λ 1 + w W s , t , p , q σ , δ g ( w ) W s , t , p , q σ , δ g ( w ) ϑ ( w ) ,
where g ( w ) = f 1 ( w ) .
Definition 2.
For μ 1 and γ 0 , a function f E is said to be in the family S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) if it fulfills the subordinations:
( 1 μ ) W s , t , p , q σ , δ f ( z ) z + μ W s , t , p , q σ , δ f ( z ) + γ z W s , t , p , q σ , δ f ( z ) ϑ ( z )
and
( 1 μ ) W s , t , p , q σ , δ g ( w ) w + μ W s , t , p , q σ , δ g ( w ) + γ w W s , t , p , q σ , δ g ( w ) ϑ ( w ) ,
where g ( w ) = f 1 ( w ) .
In particular, if we choose
ϑ ( z ) = 1 + z 1 z α ( 0 < α 1 ) and ϑ ( z ) = 1 + ( 1 2 β ) 1 z ( 0 β < 1 ) ,
the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) reduces to the families H E ( λ , σ , δ , s , t , p , q ; α ) and H E ( λ , σ , δ , s , t , p , q ; β ) which are families of the functions f E satisfying
arg ( 1 λ ) z W s , t , p , q σ , δ f ( z ) W s , t , p , q σ , δ f ( z ) + λ 1 + z W s , t , p , q σ , δ f ( z ) W s , t , p , q σ , δ f ( z ) < α π 2 ,
arg ( 1 λ ) w W s , t , p , q σ , δ g ( w ) W s , t , p , q σ , δ g ( w ) + λ 1 + w W s , t , p , q σ , δ g ( w ) W s , t , p , q σ , δ g ( w ) < α π 2
and
( 1 λ ) z W s , t , p , q σ , δ f ( z ) W s , t , p , q σ , δ f ( z ) + λ 1 + z W s , t , p , q σ , δ f ( z ) W s , t , p , q σ , δ f ( z ) > β ,
( 1 λ ) w W s , t , p , q σ , δ g ( w ) W s , t , p , q σ , δ g ( w ) + λ 1 + w W s , t , p , q σ , δ g ( w ) W s , t , p , q σ , δ g ( w ) > β ,
respectively.
In addition, the family S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) reduces to the families T E ( μ , γ , σ , δ , s , t , p , q ; α ) and T E ( μ , γ , σ , δ , s , t , p , q ; β ) which are families of the functions f E satisfying
arg ( 1 μ ) W s , t , p , q σ , δ f ( z ) z + μ W s , t , p , q σ , δ f ( z ) + γ z W s , t , p , q σ , δ f ( z ) < α π 2 ,
arg ( 1 μ ) W s , t , p , q σ , δ g ( w ) w + μ W s , t , p , q σ , δ g ( w ) + γ w W s , t , p , q σ , δ g ( w ) < α π 2
and
( 1 μ ) W s , t , p , q σ , δ f ( z ) z + μ W s , t , p , q σ , δ f ( z ) + γ z W s , t , p , q σ , δ f ( z ) > β ,
( 1 μ ) W s , t , p , q σ , δ g ( w ) w + μ W s , t , p , q σ , δ g ( w ) + γ w W s , t , p , q σ , δ g ( w ) > β ,
respectively.
Remark 2.
The families A E ( λ , σ , δ , s , t , p , q ; ϑ ) and S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) are a generalization of several known families studied in earlier investigations which are being recalled below.
1. 
For δ = 0 and ϑ ( z ) = a + ( b a p 1 ) r z 1 p 1 r z q 1 z 2 + 1 a , r R , a , b , p 1 and q 1 are real constants, the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) reduces to the family M E ( λ , r ) which was studied by Abirami et al. [1];
2. 
For δ = 0 , λ = 1 and ϑ ( z ) = a + ( b a p 1 ) r z 1 p 1 r z q 1 z 2 + 1 a , r R , a , b , p 1 and q 1 are real constants, the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) reduces to the family K E ( r ) which was introduced by Abirami et al. [1];
3. 
For δ = γ = 0 , μ = 1 and ϑ ( z ) = 1 + z 1 z α , 0 < α 1 , the family S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) reduces to the family H E ( α ) which was investigated by Srivastava et al. [2];
4. 
For δ = γ = 0 , μ = 1 and ϑ ( z ) = 1 + ( 1 2 β ) z 1 z , 0 β < 1 , the family S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) reduces to the family H E ( β ) which was defined by Srivastava et al. [2].
5. 
For δ = γ = 0 and ϑ ( z ) = 1 + z 1 z α , 0 < α 1 , the family S E ( μ , γ , σ , δ , s , t , q ; ϑ ) reduces to the family B E ( α , μ ) which was considered by Frasin and Aouf [3];
6. 
For δ = γ = 0 and ϑ ( z ) = 1 + ( 1 2 β ) z 1 z , 0 β < 1 , the family S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) reduces to the family B E ( β , μ ) which was studied by Frasin and Aouf [3];
7. 
For δ = 0 , the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) reduces to the family M E ( λ ; ϑ ) which was introduced by Ali et al. [4];
8. 
For δ = λ = 0 and ϑ ( z ) = 1 1 2 t z + z 2 , t ( 1 2 , 1 ] , the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) reduces to the family S E * ( t ) which was introduced by Bulut et al. [5];
9. 
For δ = λ = 0 and ϑ ( z ) = a + ( b a p 1 ) r z 1 p 1 r z q 1 z 2 + 1 a , r R , a , b , p 1 and q 1 are real constants, the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) reduces to the family W E ( r ) which was defined by Srivastava et al. [10];
10. 
For δ = 0 and ϑ ( z ) = 1 + z 1 z α , 0 < α 1 , the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) reduces to the family M E ( α , λ ) which was considered by Liu and Wang [46];
11. 
For δ = 0 and ϑ ( z ) = 1 + ( 1 2 β ) z 1 z , 0 β < 1 , the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) reduces to the family M E ( λ ) which was studied by Liu and Wang [46];
12. 
For δ = λ = 0 and ϑ ( z ) = 1 + z 1 z α , 0 < α 1 , the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) reduces to the family S E * ( α ) which was considered by Brannan and Taha [47];
13. 
For δ = λ = 0 and ϑ ( z ) = 1 + ( 1 2 β ) z 1 z , 0 β < 1 , the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) reduces to the family S E * ( β ) which was investigated by Brannan and Taha [47];
14. 
For δ = 0 and ϑ ( z ) = 1 1 2 t z + z 2 , t ( 2 2 , 1 ] , the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) reduces to the family H E ( λ , t ) which was studied by Altınkaya and Yalçin [48];
15. 
For δ = 0 , μ = 1 and ϑ ( z ) = 1 + z 1 z α , 0 < α 1 , the family S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) reduces to the family H E ( α , γ ) which was considered by Frasin [49];
16. 
For δ = 0 , μ = 1 and ϑ ( z ) = 1 + ( 1 2 β ) z 1 z , 0 β < 1 , the family S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) reduces to the family H E ( γ , β ) which was studied by Frasin [49];
17. 
For δ = 0 and ϑ ( z ) = 1 + ( 1 2 β ) z 1 z , 0 β < 1 , the family S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) reduces to the family N E ( β , μ , γ ) which was defined by Bulut [50];
Theorem 1.
Let f given by (1) be in the family A E ( λ , σ , δ , s , t , p , q ; ϑ ) . Then,
| b 2 | min { B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ λ + 1 [ Ψ 2 ( σ , s , t ) ] p , q δ , [ Ψ 1 ( σ , s , t ) ] p , q δ B 1 3 2 2 B 1 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ λ + 1 2 ( B 1 B 2 ) 3 λ + 1 B 1 2 }
and
| b 3 | min { B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ + B 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ 2 ( 2 λ + 1 ) [ 1 + t ] q s [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ 3 λ + 1 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ , B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ + B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ λ + 1 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ } ,
where the coefficients B 1 and B 2 are defined as in (5).
Proof. 
Let f A E ( λ , σ , δ , s , t , p , q ; ϑ ) and g = f 1 . Then, there are holomorphic functions S , T : U U with S ( 0 ) = T ( 0 ) = 0 , which fulfill the following conditions:
( 1 λ ) z W s , t , p , q σ , δ f ( z ) W s , t , p , q σ , δ f ( z ) + λ 1 + z W s , t , p , q σ , δ f ( z ) W s , t , p , q σ , δ f ( z ) = ϑ ( S ( z ) ) , z U
and
( 1 λ ) w W s , t , p , q σ , δ g ( w ) W s , t , p , q σ , δ g ( w ) + λ 1 + w W s , t , p , q σ , δ g ( w ) W s , t , p , q σ , δ g ( w ) = ϑ ( T ( w ) ) , w U .
Define the functions x and y by
x ( z ) = 1 + S ( z ) 1 S ( z ) = 1 + x 1 z + x 2 z 2 +
and
y ( z ) = 1 + T ( z ) 1 T ( z ) = 1 + y 1 z + y 2 z 2 + .
Then, x and y are analytic in U with x ( 0 ) = y ( 0 ) = 1 . Since we have S , T : U U , each of the functions x and y has a positive real part in U.
Solving for S ( z ) and T ( z ) , we have
S ( z ) = x ( z ) 1 x ( z ) + 1 = 1 2 x 1 z + x 2 x 1 2 2 z 2 + ( z U )
and
T ( z ) = y ( z ) 1 y ( z ) + 1 = 1 2 y 1 z + y 2 y 1 2 2 z 2 + ( z U ) .
By substituting (8) and (9) into (6) and (7) and applying (5), we obtain
( 1 λ ) z W s , t , p , q σ , δ f ( z ) W s , t , p , q σ , δ f ( z ) + λ 1 + z W s , t , p , q σ , δ f ( z ) W s , t , p , q σ , δ f ( z ) = ϑ x ( z ) 1 x ( z ) + 1 = 1 + 1 2 B 1 x 1 z + 1 2 B 1 x 2 x 1 2 2 + 1 4 B 2 x 1 2 z 2 +
and
( 1 λ ) w W s , t , p , q σ , δ g ( w ) W s , t , p , q σ , δ g ( w ) + λ 1 + w W s , t , p , q σ , δ g ( w ) W s , t , p , q σ , δ g ( w ) = ϑ y ( w ) 1 y ( w ) + 1 = 1 + 1 2 B 1 y 1 w + 1 2 B 1 y 2 y 1 2 2 + 1 4 B 2 y 1 2 w 2 +
Equating the coefficients in (10) and (11), yields
( λ + 1 ) [ Ψ 2 ( σ , s , t ) ] p , q δ [ Ψ 1 ( σ , s , t ) ] p , q δ b 2 = 1 2 B 1 x 1 ,
2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ [ Ψ 1 ( σ , s , t ) ] p , q δ b 3 3 λ + 1 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ [ Ψ 1 ( σ , s , t ) ] p , q 2 δ b 2 2 = 1 2 B 1 x 2 x 1 2 2 + 1 4 B 2 x 1 2 ,
( λ + 1 ) [ Ψ 2 ( σ , s , t ) ] p , q δ [ Ψ 1 ( σ , s , t ) ] p , q δ b 2 = 1 2 B 1 y 1
and
2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ [ Ψ 1 ( σ , s , t ) ] p , q δ ( 2 b 2 2 b 3 ) 3 λ + 1 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ [ Ψ 1 ( σ , s , t ) ] p , q 2 δ b 2 2 = 1 2 B 1 y 2 y 1 2 2 + 1 4 B 2 y 1 2 .
From (12) and (14), we have
x 1 = y 1
and
2 λ + 1 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ [ Ψ 1 ( σ , s , t ) ] p , q 2 δ b 2 2 = 1 4 B 1 2 ( x 1 2 + y 1 2 ) .
If we add (13) to (15), we obtain
4 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ [ Ψ 1 ( σ , s , t ) ] p , q δ b 2 2 2 3 λ + 1 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ [ Ψ 1 ( σ , s , t ) ] p , q 2 δ b 2 2 = 1 2 B 1 x 2 + y 2 x 1 2 + y 1 2 2 + 1 4 B 2 [ x 1 2 + y 1 2 ]
Substituting the value of x 1 2 + y 1 2 from (17) in the right-hand side of (18), we deduce that
b 2 2 = B 1 3 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ ( x 2 + y 2 ) 4 2 B 1 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ λ + 1 2 ( B 1 B 2 ) 3 λ + 1 B 1 2 .
Applying Lemma 1 for the coefficients x 1 , x 2 , y 1 , y 2 in (17) and (19), we obtain
| b 2 | [ Ψ 1 ( σ , s , t ) ] p , q δ B 1 3 2 2 B 1 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ λ + 1 2 ( B 1 B 2 ) 3 λ + 1 B 1 2 ,
| b 2 | B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ λ + 1 [ Ψ 2 ( σ , s , t ) ] p , q δ ,
which gives the estimates of | b 2 | . Furthermore, in order to find the bound on | b 3 | , we subtract (15) from (13) and also apply (16). We obtain x 1 2 = y 1 2 , hence,
4 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ [ Ψ 1 ( σ , s , t ) ] p , q δ ( b 3 b 2 2 ) = 1 2 B 1 ( x 2 y 2 ) ,
then, by substituting the value of b 2 2 from (17) into (20), gives
b 3 = B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ ( x 2 y 2 ) 8 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ + B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ ( x 1 2 + y 1 2 ) 8 λ + 1 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ .
So, we have
| b 3 | B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ + B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ λ + 1 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ .
In addition, substituting the value of b 2 2 from (18) into (20), we obtain
b 3 = B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ ( x 2 y 2 ) 8 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ + B 1 ( x 2 + y 2 ) + 1 2 ( x 1 2 + y 1 2 ) ( B 2 B 1 ) [ Ψ 1 ( σ , s , t ) ] p , q 2 δ 8 ( 2 λ + 1 ) [ 1 + t ] q s [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ 4 3 λ + 1 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ
and we have
| b 3 | B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ + B 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ 2 ( 2 λ + 1 ) [ 1 + t ] q s [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ 3 λ + 1 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ ,
which gives us the desired estimates of the coefficient | b 3 | . □
Taking ϑ ( z ) = 1 + z 1 z α = 1 + 2 α z + 2 α 2 z 2 + ( 0 < α 1 ) in Theorem 1, we obtain the next corollary.
Corollary 1.
Let f given by (1) be in the family H E ( λ , σ , δ , s , t , p , q ; α ) , where ( 0 < α 1 ) . Then,
| b 2 | min { 2 α [ Ψ 1 ( σ , s , t ) ] p , q δ λ + 1 [ Ψ 2 ( σ , s , t ) ] p , q δ , 2 α 2 α [ Ψ 1 ( σ , s , t ) ] p , q δ 4 α 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 2 α ( 1 α ) λ + 1 2 4 α 2 3 λ + 1 }
and
| b 3 | min { α [ Ψ 1 ( σ , s , t ) ] p , q δ ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ + 2 α 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ 2 ( 2 λ + 1 ) [ 1 + t ] q s [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ 3 λ + 1 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ , α [ Ψ 1 ( σ , s , t ) ] p , q δ ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ + 4 α 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ λ + 1 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ } .
Taking ϑ ( z ) = 1 + ( 1 2 β ) z 1 z = 1 + 2 ( 1 β ) z + 2 ( 1 β ) z 2 + ( 0 β < 1 ) in Theorem 1, we obtain the next corollary.
Corollary 2.
Let the function f given by (1) be in the function family H E ( λ , σ , δ , s , t , p , q ; β ) , where ( 0 β < 1 ) . Then,
| b 2 | min 2 ( 1 β ) [ Ψ 1 ( σ , s , t ) ] p , q δ λ + 1 [ Ψ 2 ( σ , s , t ) ] p , q δ , 2 ( 1 β ) [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 3 λ + 1
and
| b 3 | min { ( 1 β ) [ Ψ 1 ( σ , s , t ) ] p , q δ ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ + 2 ( 1 β ) [ Ψ 1 ( σ , s , t ) ] p , q 2 δ 2 ( 2 λ + 1 ) [ 1 + t ] q s [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ 3 λ + 1 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ , ( 1 β ) [ Ψ 1 ( σ , s , t ) ] p , q δ ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ + 4 1 β 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ λ + 1 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ } .
Theorem 2.
Let f given by (1) be in the family S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) . Then,
| b 2 | min { B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + μ + 2 γ [ Ψ 2 ( σ , s , t ) ] p , q δ , [ Ψ 1 ( σ , s , t ) ] p , q δ B 1 3 2 B 1 2 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 ( B 1 B 2 ) }
and
| b 3 | min { B 2 [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ , B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ + B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ } ,
where the coefficients B 1 and B 2 are defined as in (5).
Proof. 
Let f S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) and g = f 1 . Then, there are holomorphic functions S , T : U U such that
( 1 μ ) W s , t , p , q σ , δ f ( z ) z + μ W s , t , p , q σ , δ f ( z ) + γ z W s , t , p , q σ , δ f ( z ) = ϑ ( S ( z ) ) , z U
and
( 1 μ ) W s , t , p , q σ , δ g ( w ) w + μ W s , t , p , q σ , δ g ( w ) + γ w W s , t , p , q σ , δ g ( w ) = ϑ ( T ( w ) ) , w U ,
where S ( z ) and T ( z ) have the forms (8) and (9). From (21), (22) and (5), we deduce that
( 1 μ ) W s , t , p , q σ , δ f ( z ) z + μ W s , t , p , q σ , δ f ( z ) + γ z W s , t , p , q σ , δ f ( z ) = ϑ x ( z ) 1 x ( z ) + 1 = 1 + 1 2 B 1 x 1 z + 1 2 B 1 x 2 x 1 2 2 + 1 4 B 2 x 1 2 z 2 +
and
( 1 μ ) W s , t , p , q σ , δ g ( w ) w + μ W s , t , p , q σ , δ g ( w ) + γ w W s , t , p , q σ , δ δ g ( w ) = ϑ y ( w ) 1 y ( w ) + 1 = 1 + 1 2 B 1 y 1 w + 1 2 B 1 y 2 y 1 2 2 + 1 4 B 2 y 1 2 w 2 +
Equating the coefficients in (23) and (24), yields
( 1 + μ + 2 γ ) [ Ψ 2 ( σ , s , t ) ] p , q δ [ Ψ 1 ( σ , s , t ) ] p , q δ b 2 = 1 2 B 1 x 1 ,
1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ [ Ψ 1 ( σ , s , t ) ] p , q δ b 3 = 1 2 B 1 x 2 x 1 2 2 + 1 4 B 2 x 1 2 ,
( 1 + μ + 2 γ ) [ Ψ 2 ( σ , s , t ) ] p , q δ [ Ψ 1 ( σ , s , t ) ] p , q δ b 2 = 1 2 B 1 y 1
and
1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ [ Ψ 1 ( σ , s , t ) ] p , q δ ( 2 b 2 2 b 3 ) = 1 2 B 1 y 2 y 1 2 2 + 1 4 B 2 y 1 2 .
From (25) and (27), we have
x 1 = y 1
and
2 1 + μ + 2 γ 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ [ Ψ 1 ( σ , s , t ) ] p , q 2 δ b 2 2 = 1 4 B 1 2 ( x 1 2 + y 1 2 ) .
If we add (26) to (28), we obtain
2 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ [ Ψ 1 ( σ , s , t ) ] p , q δ b 2 2 = 1 2 B 1 x 2 + y 2 x 1 2 + y 1 2 2 + 1 4 B 2 [ x 1 2 + y 1 2 ]
Substituting the value of x 1 2 + y 1 2 from (30) in the right-hand side of (31), we deduce that
b 2 2 = B 1 3 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ ( x 2 + y 2 ) 4 B 1 2 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 ( B 1 B 2 ) .
Applying Lemma 1 for the coefficients x 1 , x 2 , y 1 , y 2 in (30) and (32), we obtain
| b 2 | [ Ψ 1 ( σ , s , t ) ] p , q δ B 1 3 2 B 1 2 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 ( B 1 B 2 ) ,
| b 2 | B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + μ + 2 γ [ Ψ 2 ( σ , s , t ) ] p , q δ ,
which gives the estimates of | b 2 | . Furthermore, in order to find the bound of | b 3 | , we subtract (28) from (26) and also apply (29). Then, we obtain x 1 2 = y 1 2 , and hence,
2 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ [ Ψ 1 ( σ , s , t ) ] p , q δ ( b 3 b 2 2 ) = 1 2 B 1 ( x 2 y 2 ) ,
then, by substituting the value of b 2 2 from (30) into (33), gives
b 3 = B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ ( x 2 y 2 ) 4 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ + B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ ( x 1 2 + y 1 2 ) 8 1 + μ + 2 γ 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ .
So, we have
| b 3 | B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ + B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ
In addition, substituting the value of b 2 2 from (31) into (33), we obtain
b 3 = 2 B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ x 2 + 1 2 ( B 2 B 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ ( x 1 2 + y 1 2 ) 4 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ
and we have
| b 3 | B 2 [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ ,
which gives us the desired estimates of the coefficient | b 3 | . □
Taking ϑ ( z ) = 1 + z 1 z α = 1 + 2 α z + 2 α 2 z 2 + ( 0 < α 1 ) in Theorem 2, we obtain the next corollary.
Corollary 3.
Let f given by (1) be in the family T E ( μ , γ , σ , δ , s , t , p , q ; α ) , where ( 0 < α 1 ) . Then,
| b 2 | min { 2 α [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + μ + 2 γ [ Ψ 2 ( σ , s , t ) ] p , q δ , 2 α 2 α [ Ψ 1 ( σ , s , t ) ] p , q δ 4 α 2 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + 2 α ( 1 α ) 1 + μ + 2 γ 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ }
and
| b 3 | min { 2 α 2 [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ , 2 α [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ + 4 α 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ } .
Taking ϑ ( z ) = 1 + ( 1 2 β ) z 1 z = 1 + 2 ( 1 β ) z + 2 ( 1 β ) z 2 + ( 0 β < 1 ) in Theorem 2, we obtain the next corollary.
Corollary 4.
Let the function f given by (1) be in the function family T E ( μ , γ , σ , δ , s , t , p , q ; β ) , where ( 0 β < 1 ) . Then,
| b 2 | min 2 ( 1 β ) [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + μ + 2 γ [ Ψ 2 ( σ , s , t ) ] p , q δ , 2 ( 1 β ) [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ
and
| b 3 | min { 2 ( 1 β ) [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ , 2 ( 1 β ) [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ + 4 1 β 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 [ Ψ 2 ( σ , s , t ) ] p , q 2 δ } .
Remark 3.
The problem of maximizing the absolute value of the functional | b 3 η b 2 2 | is called the Fekete–Szegö problem. Many authors obtained Fekete–Szegö inequalities for different classes of functions. Obtaining Fekete–Szegö inequalities for different classes of functions defined by operators, the study of bi-univalent functions using operators and the study on coefficients of the functions is a topic of interest at this time (see [1,2,3,4,5,7,10,11,14,46,47,48,49,50,51]).
1. 
In [1], the authors obtained Fekete–Szegö inequalities and coefficient inequalities for certain classes of bi-univalent functions defined by Horamad Polynomials;
2. 
In [8], the authors obtained Fekete–Szegö inequalities for classes of analytic and bi-univalent functions defined by (p, q)-derivative operator;
3. 
In [23], the authors obtained Fekete–Szegö inequalities for subclasses of analytic and bi-univalent functions defined by subordinations using the Sălăgean operator;
4. 
In [52], the author obtained Fekete–Szegö inequalities for analytic and bi-univalent functions subordinate to (p,q)-Lucas Polynomials;
5. 
In [53], the authors obtained Fekete–Szegö inequalities for analytic and bi-univalent functions subordinate to Gegenbauer polynomials;
6. 
In [54], the authors obtained Fekete–Szegö inequalities for analytic and bi-univalent functions subordinate to Cebyshev polynomials;
7. 
In [55], the authors obtained Fekete–Szegö inequalities and coefficients bounds for new classes of bi-univalent functions defined by the Sălăgean integro-differential operator;
8. 
In [56], the author obtained Fekete–Szegö inequalities for classes of bi-univalent functions defined in terms of subordinations.
In the next theorems, we provide the Fekete–Szegö type inequalities for the functions of the families A E ( λ , σ , δ , s , t , p , q ; ϑ ) and S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) .
Theorem 3.
For η R , let f A E ( λ , σ , δ , s , t , p , q ; ϑ ) be of the form (1). Then,
b 3 η b 2 2 B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ ; η 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 2 B 1 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ λ + 1 2 ( B 1 B 2 ) 3 λ + 1 B 1 2 2 B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ [ Ψ 3 ( σ , s , t ) ] p , q δ ( 2 λ + 1 ) , B 1 3 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ η 1 2 B 1 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ λ + 1 2 ( B 1 B 2 ) 3 λ + 1 B 1 2 ; η 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 2 B 1 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ λ + 1 2 ( B 1 B 2 ) 3 λ + 1 B 1 2 2 B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ [ Ψ 3 ( σ , s , t ) ] p , q δ ( 2 λ + 1 ) .
Proof. 
It follows from (19) and (20) that
b 3 η b 2 2 = B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ ( x 2 y 2 ) 8 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ + 1 η b 2 2 = B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ ( x 2 y 2 ) 8 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ + B 1 3 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ ( x 2 + y 2 ) 1 η 4 2 B 1 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ λ + 1 2 ( B 1 B 2 ) 3 λ + 1 B 1 2 = B 1 4 Υ ( η ) + [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ x 2 + Υ ( η ) [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ y 2 ,
where
Υ ( η ) = B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ 1 η 2 B 1 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ λ + 1 2 ( B 1 B 2 ) 3 λ + 1 B 1 2 .
According to Lemma 1 and (5), we find that
b 3 η b 2 2 B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ , 0 Υ ( η ) [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ , B 1 Υ ( η ) , Υ ( η ) [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ .
After some computations, we obtain
b 3 η b 2 2 B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ ; η 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 2 B 1 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ λ + 1 2 ( B 1 B 2 ) 3 λ + 1 B 1 2 2 B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ [ Ψ 3 ( σ , s , t ) ] p , q δ ( 2 λ + 1 ) , B 1 3 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ η 1 2 B 1 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ λ + 1 2 ( B 1 B 2 ) 3 λ + 1 B 1 2 ; η 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 2 B 1 2 ( 2 λ + 1 ) [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ λ + 1 2 ( B 1 B 2 ) 3 λ + 1 B 1 2 2 B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ [ Ψ 3 ( σ , s , t ) ] p , q δ ( 2 λ + 1 ) .
Putting η = 1 in Theorem 3, we obtain the following result.
Corollary 5.
If f A E ( λ , σ , δ , s , t , p , q ; ϑ ) is of the form (1), then
b 3 b 2 2 B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , s , t ) ] p , q δ .
Theorem 4.
For η R , let f S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) be of the form (1). Then,
b 3 η b 2 2 B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ ; η 1 [ Ψ 1 ( σ , s , t ) ] p , q δ B 1 2 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 ( B 1 B 2 ) B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ [ Ψ 3 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ , B 1 3 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ η 1 B 1 2 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 ( B 1 B 2 ) ; η 1 [ Ψ 1 ( σ , s , t ) ] p , q δ B 1 2 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 ( B 1 B 2 ) B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ [ Ψ 3 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ .
.
Proof. 
It follows from (32) and (33) that
b 3 η b 2 2 = B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ ( x 2 y 2 ) 4 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ + 1 η b 2 2 = B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ ( x 2 y 2 ) 4 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ + B 1 3 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ ( x 2 + y 2 ) 1 η 4 B 1 2 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 ( B 1 B 2 ) = B 1 4 Ω ( η ) + [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ x 2 + Ω ( η ) [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ y 2 ,
where
Ω ( η ) = B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ 1 η B 1 2 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 ( B 1 B 2 ) .
According to Lemma 1 and (5), we find that
b 3 η b 2 2 B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ , 0 Ω ( η ) [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ , B 1 Ω ( η ) , Ω ( η ) [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ .
After some computations, we obtain
b 3 η b 2 2 B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ ; η 1 [ Ψ 1 ( σ , s , t ) ] p , q δ B 1 2 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 ( B 1 B 2 ) B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ [ Ψ 3 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ , B 1 3 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ η 1 B 1 2 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 ( B 1 B 2 ) ; η 1 [ Ψ 1 ( σ , s , t ) ] p , q δ B 1 2 1 + 2 μ + 6 γ [ Ψ 1 ( σ , s , t ) ] p , q δ [ Ψ 3 ( σ , s , t ) ] p , q δ + [ Ψ 2 ( σ , s , t ) ] p , q 2 δ 1 + μ + 2 γ 2 ( B 1 B 2 ) B 1 2 [ Ψ 1 ( σ , s , t ) ] p , q 2 δ [ Ψ 3 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ .
Putting η = 1 in Theorem 4, we obtain the following result.
Corollary 6.
If f S E ( μ , γ , σ , δ , s , t , p , q ; ϑ ) is of the form (1), then
b 3 b 2 2 B 1 [ Ψ 1 ( σ , s , t ) ] p , q δ 1 + 2 μ + 6 γ [ Ψ 3 ( σ , s , t ) ] p , q δ .

3. Conclusions

As future research directions, the symmetry properties of this newly introduced operator can be studied.

Author Contributions

These authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the referees for their careful reading and helpful comments.

Conflicts of Interest

The authors declare no conflict of interest in this paper.

References

  1. Abirami, C.; Magesh, N.; Yamini, J. Initial bounds for certain classes of bi-univalent functions defined by Horadam Polynomials. Abstr. Appl. Anal. 2020, 2020, 7391058. [Google Scholar] [CrossRef] [Green Version]
  2. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
  3. Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
  4. Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef] [Green Version]
  5. Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 2017, 8, 32–39. [Google Scholar]
  6. Srivastava, H.M.; Wanas, A.K.; Murugusundaramoorthy, G. Certain family of bi-univalent functions associated with Pascal distribution series based on Horadam polynomials. Surv. Math. Appl. 2021, 16, 193–205. [Google Scholar]
  7. Al-Amoush, A.G. Coefficient estimates for a new subclasses of λ-pseudo biunivalent functions with respect to symmetrical points associated with the Horadam Polynomials. Turk. J. Math. 2019, 43, 2865–2875. [Google Scholar] [CrossRef]
  8. Cotîrlǎ, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
  9. Güney, H.Ö.; Murugusundaramoorthy, G.; Sokół, J. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapient. Math. 2018, 10, 70–84. [Google Scholar] [CrossRef] [Green Version]
  10. Srivastava, H.M.; Altınkaya, Ş.; Yalçin, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 1873–1879. [Google Scholar] [CrossRef]
  11. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
  12. Srivastava, H.M.; Wanas, A.K.; Güney, H.Ö. New families of bi-univalent functions associated with the Bazilevič functions and the λ-Pseudo-starlike functions. Iran. J. Sci. Technol. Trans. A Sci. 2021, 45, 1799–1804. [Google Scholar] [CrossRef]
  13. Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
  14. Wanas, A.K. Applications of (M,N)-Lucas polynomials for holomorphic and bi-univalent functions. Filomat 2020, 34, 3361–3368. [Google Scholar] [CrossRef]
  15. Wanas, A.K. Horadam polynomials for a new family of λ-pseudo bi-univalent functions associated with Sakaguchi type functions. Afr. Mat. 2021, 32, 879–889. [Google Scholar] [CrossRef]
  16. Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 2, 85–89. [Google Scholar] [CrossRef]
  17. Cataş, A. A note on subclasses of univalent functions defined by a generalized Sălăgean operator. Acta Univ. Apulensis 2006, 12, 73–78. [Google Scholar]
  18. Magesh, N.; Yamini, J. Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions. Tbilisi Math. J. 2018, 11, 141–157. [Google Scholar] [CrossRef] [Green Version]
  19. Raina, R.K.; Sokol, J. Fekete-Szegö problem for some starlike functions related to shell-like curves. Math. Slovaca 2016, 66, 135–140. [Google Scholar] [CrossRef]
  20. Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 2019, 113, 3563–3584. Available online: https://arxiv.org/abs/1912.05298 (accessed on 1 November 2021).
  21. Wanas, A.K.; Lupas, A.A. Applications of Horadam Polynomials on Bazilevic Bi- Univalent Function Satisfying Subordinate Conditions. J. Phys. Conf. Ser. 2019, 1294, 032003. [Google Scholar] [CrossRef]
  22. Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Incorporated: New York, NY, USA; Marcel Dekker Incorporated: Basel, Switzerland, 2000; Volume 225. [Google Scholar]
  23. Çağlar, M.; Aslan, S. Fekete-Szegö inequalities for subclasses of bi-univalent functions satisfying subordinate conditions. AIP Conf. Proc. 2016, 1726, 020078. [Google Scholar] [CrossRef]
  24. Jagannathan, R.; Rao, K.S. Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. arXiv 2006, arXiv:math/0602613. [Google Scholar]
  25. Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
  26. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
  27. Victor, K.; Pokman, C. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
  28. Chakrabarti, R.; Jagannathan, R. A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711. [Google Scholar] [CrossRef]
  29. Corcino, R.B. On p,q-binomial coefficients. Integers 2008, 8, A29. [Google Scholar]
  30. Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. arXiv 2013, arXiv:1309.3934. [Google Scholar]
  31. Wanas, A.K. New differential operator for holomorphic functions. Earthline J. Math. Sci. 2019, 2, 527–537. [Google Scholar] [CrossRef]
  32. Shah, S.A.; Noor, K.I. Study on the q-analogue of a certain family of linear operators. Turk J. Math. 2019, 43, 2707–2714. [Google Scholar] [CrossRef]
  33. Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]
  34. Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
  35. Swamy, S.R. Inclusion properties of certain subclasses of analytic functions. Int. Math. Forum 2012, 7, 1751–1760. [Google Scholar]
  36. Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. Integral Transform. Spec. Funct. 2007, 18, 207–216. [Google Scholar] [CrossRef]
  37. Cho, N.E.; Srivastava, H.M. Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Model. 2003, 37, 39–49. [Google Scholar] [CrossRef]
  38. Uralegaddi, B.A.; Somanatha, C. Certain classes of univalent functions. In Current Topics in Analytic Function Theory; Srivastava, H.M., Own, S., Eds.; World Scientific: Singapore, 1992; pp. 371–374. [Google Scholar]
  39. Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef] [Green Version]
  40. Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
  41. Alexander, J.W. Functions which map the interior of the unit circle upon simple region. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
  42. Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
  43. Sălxaxgean, G.S. Subclasses of univalent functions. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1983; Volume 1013, pp. 362–372. [Google Scholar]
  44. Duren, P.L. Grundlehren der Mathematischen Wissenschaften, Band 259. In Univalent Functions; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
  45. Pommerenke, C. Univalent Functions; Vandenhoeck and Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
  46. Li, X.-F.; Wang, A.-P. Two new subclasses of bi-univalent functions. Int. Math. Forum 2012, 7, 1495–1504. [Google Scholar]
  47. Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babeş–Bolyai Math. 1988, 31, 53–60. [Google Scholar]
  48. Altınkaya, Ş.; Yalçin, S. Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. arXiv 2017, arXiv:1605.08224v2. [Google Scholar]
  49. Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389. [Google Scholar] [CrossRef] [Green Version]
  50. Bulut, S. Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions. Filomat 2016, 30, 1567–1575. [Google Scholar] [CrossRef]
  51. Altınkaya, Ş.; Yalçin, S. Fekete-Szegö inequalities for certain classes of biunivalent functions. Int. Sch. Res. Not. 2014, 1726. [Google Scholar] [CrossRef] [PubMed]
  52. Amourah, A. Fekete-Szegö inequalities for analytic and bi-univalent functions subordinate to (p,q)-Lucas Polynomials. arXiv 2020, arXiv:2004.00409. [Google Scholar]
  53. Amourah, A.; Frasin, B.A.; Abdeljaward, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
  54. Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szego inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. arXiv 2018, arXiv:1801.09531. [Google Scholar] [CrossRef]
  55. Páll-Szabó, A.O.; Oros, G.I. Coefficient Related Studies for New Classes of Bi-Univalent Functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
  56. Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Wanas, A.K.; Cotîrlǎ, L.-I. Initial Coefficient Estimates and Fekete–Szegö Inequalities for New Families of Bi-Univalent Functions Governed by (pq)-Wanas Operator. Symmetry 2021, 13, 2118. https://0-doi-org.brum.beds.ac.uk/10.3390/sym13112118

AMA Style

Wanas AK, Cotîrlǎ L-I. Initial Coefficient Estimates and Fekete–Szegö Inequalities for New Families of Bi-Univalent Functions Governed by (pq)-Wanas Operator. Symmetry. 2021; 13(11):2118. https://0-doi-org.brum.beds.ac.uk/10.3390/sym13112118

Chicago/Turabian Style

Wanas, Abbas Kareem, and Luminiţa-Ioana Cotîrlǎ. 2021. "Initial Coefficient Estimates and Fekete–Szegö Inequalities for New Families of Bi-Univalent Functions Governed by (pq)-Wanas Operator" Symmetry 13, no. 11: 2118. https://0-doi-org.brum.beds.ac.uk/10.3390/sym13112118

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop