Next Article in Journal
Analytical Investigation of Fractional-Order Korteweg–De-Vries-Type Equations under Atangana–Baleanu–Caputo Operator: Modeling Nonlinear Waves in a Plasma and Fluid
Next Article in Special Issue
Analytically Pricing Formula for Contingent Claim with Polynomial Payoff under ECIR Process
Previous Article in Journal
Facial Asymmetry: A Narrative Review of the Most Common Neurological Causes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On a Nonlocal Coupled System of Hilfer Generalized Proportional Fractional Differential Equations

by
Ayub Samadi
1,*,†,
Sotiris K. Ntouyas
2,† and
Jessada Tariboon
3,*,†
1
Department of Mathematics, Miyaneh Branch, Islamic Azad University, Miyaneh 5315836511, Iran
2
Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece
3
Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Submission received: 16 March 2022 / Revised: 24 March 2022 / Accepted: 2 April 2022 / Published: 4 April 2022
(This article belongs to the Special Issue Differential Equations and Applied Mathematics)

Abstract

:
This paper studies the existence and uniqueness of solutions for a coupled system of Hilfer-type generalized proportional fractional differential equations supplemented with nonlocal asymmetric multipoint boundary conditions. We consider both the scalar and the Banach space case. We apply standard fixed-point theorems to derive the desired results. In the scalar case, we apply Banach’s fixed-point theorem, the Leray–Schauder alternative, and Krasnosel’skiĭ’s fixed-point theorem. The Banach space case is based on Mönch’s fixed-point theorem and the technique of the measure of noncompactness. Examples illustrating the main results are presented. Symmetric distance between itself and its derivative can be investigated by replacing the proportional number equal to one half.

1. Introduction

Fractional calculus appears as a developed area of mathematical analysis to consider many real-world problems [1,2,3,4,5,6,7,8]. Fractional calculus is composed of massive traits to construct wide applications in multiple scientific studies. Considered equations in fractional calculus are often unable to study complex systems, and a diversity of new fractional operators were introduced to improve the field of fractional calculus [9,10,11,12,13,14]. In the literature, one can find several kinds of fractional derivatives, such as Riemann–Liouville, Caputo, Hadamard, Hilfer, and Katugampola. The Riemann–Liouville and Caputo fractional derivatives were extended to the Hilfer fractional derivative [15], and many applications of Hilfer fractional derivative were then obtained in many fields of mathematics and physics. (see [16,17,18]). In [19], the study of the Hilfer generalized proportional was introduced by the authors. In [20], the study of boundary value problems of the Hilfer generalized proportional fractional derivative of order in ( 1 , 2 ] , supplemented with nonlocal multipoint boundary conditions, given by
D a + α , η , σ + k D a + α 1 , η , σ x ( t ) = f ( t , x ( t ) ) , t [ a , b ] , x ( a ) = 0 , x ( b ) = j = 1 m θ j x ( ξ j )
was initiated, where D a + α , η , σ is the fractional derivative of a Hilfer generalized proportional type of order 1 < α < 2 , Hilfer parameter 0 η 1 , σ ( 0 , 1 ] , k R , f : [ a , b ] × R R is a continuous function, a 0 , θ j R , ξ j ( a , b ) for j = 1 , 2 , 3 , , m . Existence and uniqueness results were considered first in the scalar case by applying some classical fixed-point theorems. The notion of measure of measure of noncompactness and Mönch’s fixed-point theorem were then applied to obtain an existence result for Problem (1), where f : [ a , b ] × E E is a given function, and ( E , · ) is a real Banach space.
In recent years, very few papers have been published dealing with Hilfer generalized proportional fractional derivative of order in ( 1 , 2 ] . Motivated by the above paper, we enrich this new research area. Thus, in this paper, a coupled system of Hilfer-type generalized proportional fractional differential equations with nonlocal multipoint boundary conditions of form
D c + δ 1 , η , σ + k D c + δ 1 1 , η , σ r ( z ) = h 1 ( z , r ( z ) , s ( z ) ) , z [ c , d ] , D c + δ 2 , η , σ + k 1 D c + δ 2 1 , η , σ s ( z ) = h 2 ( z , r ( z ) , s ( z ) ) , r ( c ) = 0 , r ( d ) = j = 1 m θ j s ( ξ j ) , s ( c ) = 0 , s ( d ) = i = 1 n ε i r ( λ i ) ,
is investigated, in which D a + δ 1 , η , σ and D a + δ 2 , η , σ are the fractional derivatives of Hilfer generalized proportional type of order 1 < δ 1 , δ 2 < 2 , Hilfer parameter 0 η 1 , σ ( 0 , 1 ] , k , k 1 R , h 1 , h 2 : [ a , b ] × R R are continuous functions, a 0 , θ j , ε i R , ξ j , λ i ( a , b ) for i = 1 , 2 , 3 , , n and j = 1 , 2 , , m .
We prove existence and uniqueness results in the scalar case by applying classical Banach and Krasnosel’skiĭ fixed-point theorems, and the Leray–Schauder alternative. Next, by using the measure of noncompactness and Mönch’s fixed point theorem, we establish an existence result for Problem (2) when f : [ c , d ] × E E is a given function, and ( E , · ) is a real Banach space.
The remainder of this work is organized as follows. Section 2 outlines some basic notations, definitions, and basic results of fractional calculus. An auxiliary lemma concerning a linear variant of Problem (1) is also proved. This lemma help in converting nonlinear Problem (1) into a fixed-point problem. Our main results are presented in Section 3 for the scalar case, and Section 4 for the Banach space case. Section 5 is devoted to constructing illustrative numerical examples. The work in this paper is new and enriches the literature on coupled systems of Hilfer-type generalized proportional fractional differential equations. The used methods are standard, but their configuration in the present problem is new.

2. Preliminaries

Here, some notations, definitions, and lemmas from fractional calculus are recalled.
Let C ( [ c , d ] , E ) be the Banach space of all continuous functions u : [ c , d ] E endowed by
u = sup { u ( z ) , z [ c , d ] } .
In the case when E = R , we use notation
u = sup { | u ( z ) | , z [ c , d ] } .
Definition 1.
Let h L 1 ( [ c , d ] , R ) . The fractional integral of the Riemann–Liouville type with order δ > 0 is defined by [2]
I c + δ h ( z ) = 1 Γ ( δ ) c z ( z τ ) δ 1 h ( τ ) d τ ,
in which Γ ( · ) is the gamma function.
Definition 2.
Let h C n ( [ c , d ] , R ) . The fractional derivative of Caputo type with order δ > 0 of function h is defined by [2]
C D c + δ h ( z ) = 1 Γ ( n δ ) c z ( z s ) n δ 1 h ( n ) ( s ) d s ,
while the Riemann–Liouville type is defined by
R L D c + δ h ( z ) = 1 Γ ( n δ ) d d z n c z ( z s ) n δ 1 h ( s ) d s ,
where n 1 < δ < n , n N , provided the right-hand side of the two equations above exists.
Definition 3.
Let σ ( 0 , 1 ] and δ C with Re ( δ ) > 0 . Then, fractional operator [21]
I c + δ , σ h ( z ) = 1 σ δ Γ ( δ ) c z e σ 1 σ ( z s ) ( z s ) δ 1 h ( s ) d s , z > c ,
indicates the left-sided generalized proportional integral of order δ > 0 of function h .
Definition 4.
The Riemann–Liouville type of proportional fractional derivative of order δ > 0 and σ ( 0 , 1 ] of function h is defined by [21]
D c + δ , σ h ( z ) = D n , σ σ n δ Γ ( n δ ) c z e σ 1 σ ( z s ) ( z s ) n δ 1 h ( s ) d s ,
while the Caputo type is given by
C D c + δ , σ h ( z ) = 1 σ n δ Γ ( n δ ) c z e σ 1 σ ( z s ) ( z s ) n δ 1 D n , σ h ( s ) d s ,
provided that the right-hand side of the two equations above exists, where Γ ( · ) indicates the gamma function and n = [ δ ] + 1 , [ δ ] denotes the integer part of a real number δ . In addition, notation D n , σ is defined by
D n , σ = D σ D σ D σ n t i m e s ,
where the proportional derivative of a function h C 1 ( R , R ) is defined as
D σ h ( z ) = ( 1 σ ) h ( z ) + σ d d z h ( z ) , σ ( 0 , 1 ] .
Remark 1.
If σ = 1 2 , then D 1 2 h ( z ) lies in a path of symmetrical distance between h ( z ) and h ( z ) .
Remark 2.
If we set D σ h ( z ) = ( 1 σ ) h ( z ) + σ h ( z ) : = f ( z ) , this is a linear first-order differential equation that can be solved as
h ( z ) = 1 σ c z e σ 1 σ ( z s ) f ( s ) d s = I c + 1 , σ f ( z ) .
Some properties of the generalized proportional fractional integral and derivative are given in the next lemmas.
Lemma 1.
Assume that δ , δ ¯ C , so that R e ( δ ) 0 and R e ( δ ¯ ) > 0 . Then, for any σ ( 0 , 1 ] , [21]
( I c + δ , σ e σ 1 σ s ( s c ) δ ¯ 1 ) ( z ) = Γ ( δ ¯ ) σ δ Γ ( δ ¯ + δ ) e σ 1 σ z ( z c ) δ ¯ + δ 1 , ( D c + δ , σ e σ 1 σ s ( s c ) δ ¯ 1 ) ( z ) = σ δ Γ ( δ ¯ ) Γ ( δ ¯ δ ) e σ 1 σ z ( z c ) δ ¯ δ 1 , ( I c + δ , σ e σ 1 σ ( c s ) ( c s ) δ ¯ 1 ) ( z ) = Γ ( δ ¯ ) σ δ Γ ( δ ¯ + δ ) e σ 1 σ ( c z ) ( c z ) δ ¯ + δ 1 , ( D c + δ , σ e σ 1 σ ( c s ) ( c s ) δ ¯ 1 ) ( z ) = σ δ Γ ( δ ¯ ) Γ ( δ ¯ δ ) e σ 1 σ ( c z ) ( c z ) δ ¯ δ 1 .
Lemma 2.
Suppose that σ ( 0 , 1 ] , R e ( δ 1 ) > 0 and R e ( δ 2 ) > 0 . If h C ( [ c , d ] , R ) , then [21]
I c + δ , σ ( I δ ¯ , σ h ) ( z ) = I c + δ ¯ , σ ( I δ , σ h ) ( z ) = ( I c + δ + δ ¯ , σ h ) ( z ) , z c .
Lemma 3.
Let σ ( 0 , 1 ] and 0 m < [ ( δ ) ] + 1 . If h L 1 ( [ a , b ] ) then [21]
D c + m , σ ( I c + δ , σ h ) ( z ) = I c + δ m h ( z ) , z > c .
The Hilfer generalized proportional fractional derivative is introduced.
Definition 5.
Let n 1 < δ < n , n N , σ ( 0 , 1 ] and 0 η 1 . Then, the generalized proportional fractional derivative of the Hilfer type with order δ, parameter η, and proportional number σ of function h is defined by [19]
( D c + δ , η , σ h ) ( z ) = I c + η ( n δ ) , σ [ D n , σ ( I c + ( 1 η ) ( n δ ) , σ h ) ] ( z ) ,
in which D n , σ is the proportional derivative of order n, and I ( · ) , σ is the generalized proportional fractional integral in Definition 3.
The Hilfer generalized proportional fractional derivative is equivalent to
( D c + δ , η , σ h ) ( z ) = I c + η ( n δ ) , σ [ D n , σ ( I c + ( 1 η ) ( n δ ) , σ h ) ] ( z ) = ( I c + η ( n δ ) , σ D γ , σ h ) ( z ) ,
where γ = δ + η ( n δ ) . Thus, operator D c + δ , η , σ can be represented in terms of operators given in Definition 4. If η 1 , then it is the Caputo-type proportional fractional derivative; η 0 can be reduced to a Reimann–Liouville type proportional fractional derivative. Parameter γ satisfies
1 < γ 2 , γ δ , γ > η , n γ < n η ( n δ ) .
Inspired by the Lemma 3.9 of [19], the following lemma is introduced.
Lemma 4.
Let n 1 < δ < n , σ ( 0 , 1 ] , 0 η 1 and γ = δ + η ( n δ ) [ δ , n ] . If h L 1 ( c , d ) and I c + n γ , σ h C n ( [ c , d ] , R ) , then
I c + δ , σ D c + δ , η , σ h ( z ) = h ( z ) j = 1 n e σ 1 σ ( z c ) ( z c ) γ j σ γ j Γ ( γ + 1 j ) I j γ , σ h ( c + ) .
In the following lemma, we solve the linear variant of Problem (1).
Lemma 5.
Let 1 < δ 1 , δ 2 < 2 , 0 η 1 , γ 1 = δ 1 + η ( 2 δ 1 ) [ δ 1 , 2 ] , γ 2 = δ 2 + η ( 2 δ 2 ) [ δ 2 , 2 ] , σ ( 0 , 1 ] , g , g 1 C ( [ c , d ] , R ) and D 0 . Then pair ( r , s ) is the solution of system
D δ 1 , η , σ + k D δ 1 1 , η , σ r ( z ) = g ( z ) , z [ c , d ] D δ 2 , η , σ + k 1 D δ 2 1 , η , σ s ( z ) = g 1 ( z ) , r ( c ) = 0 , r ( d ) = j = 1 m θ j s ( ξ j ) , s ( c ) = 0 s ( d ) = i = 1 k ε i r ( λ i ) ,
if and only if
r ( z ) = I c + δ 1 , σ g ( z ) k σ c z r ( u ) e σ 1 σ ( z u ) d u + ( z c ) γ 1 1 D Γ ( γ 1 ) e σ 1 σ ( z c ) [ Δ ( j = 1 m θ j I c + δ 2 , σ g 1 ( ξ j ) k 1 σ j = 1 m θ j c ξ j s ( u ) e σ 1 σ ( ξ j u ) d u I c + δ 1 , σ g ( d ) + k σ c d r ( u ) e σ 1 σ ( d u ) d u ) + B ( i = 1 k ε i I c + δ 1 , σ g ( λ i ) k σ i = 1 n ε i c λ i r ( u ) e σ 1 σ ( λ i u ) d u I c + δ 2 , σ g 1 ( d ) + k 1 σ c d s ( u ) e σ 1 σ ( d u ) d u ) ] ,
s ( z ) = I c + δ 2 , σ g 1 ( z ) k 1 σ c z s ( u ) e σ 1 σ ( z u ) d u + ( z c ) γ 2 1 D Γ ( γ 2 ) e σ 1 σ ( z c ) [ A ( i = 1 k ε i I c + δ 1 , σ g ( λ i ) k σ i = 1 n ε i c λ i r ( u ) e σ 1 σ ( λ i u ) d u I c + δ 2 , σ g 1 ( d ) + k 1 σ c d s ( u ) e σ 1 σ ( d u ) d u ) + Γ ( j = 1 m θ j I c + δ 2 , σ g 1 ( ξ j ) k 1 σ j = 1 m θ j c ξ j s ( u ) e σ 1 σ ( ξ j u ) d u I c + δ 1 , σ g ( d ) + k σ c d r ( u ) e σ 1 σ ( d u ) d u ) ] ,
where
A = ( d c ) γ 1 1 Γ ( γ 1 ) e σ 1 σ ( d c ) , B = j = 1 m θ j ( ξ j c ) γ 2 1 Γ ( γ 2 ) e σ 1 σ ( ξ j c ) , Γ = i = 1 n ε i ( λ i c ) γ 1 1 Γ ( γ 1 ) e σ 1 σ ( λ i c ) , Δ = ( d c ) γ 2 1 Γ ( γ 2 ) e σ 1 σ ( d c ) , D = A Δ B Γ .
Proof. 
Assume that pair ( r , s ) is the solution of Problem (2). Operating fractional integrals I c + δ 1 , σ and I c + δ 2 , σ to both sides of equations of (4) and using Lemma 4, we obtain
r ( z ) = I c + δ 1 , σ g ( z ) + c 0 ( z c ) γ 1 2 Γ ( γ 1 1 ) e σ 1 σ ( z c ) + c 1 ( z c ) γ 1 1 Γ ( γ 1 ) e σ 1 σ ( z c ) k σ c z r ( u ) e σ 1 σ ( z u ) d u ,
s ( z ) = I c + δ 2 , σ g 1 ( z ) + d 0 ( z c ) γ 2 2 Γ ( γ 2 1 ) e σ 1 σ ( z c ) + d 1 ( z c ) γ 2 1 Γ ( γ 2 ) e σ 1 σ ( z c ) k 1 σ c z s ( u ) e σ 1 σ ( z u ) d u .
Applying r ( c ) = s ( c ) = 0 , we get c 0 , d 0 = 0 . Hence,
r ( z ) = I c + δ 1 , σ g ( z ) + c 1 ( z c ) γ 1 1 Γ ( γ 1 ) e σ 1 σ ( z c ) k σ c z r ( u ) e σ 1 σ ( z u ) d u ,
s ( z ) = I c + δ 2 , σ g 1 ( z ) + d 1 ( z c ) γ 2 1 Γ ( γ 2 ) e σ 1 σ ( z c ) k 1 σ c z s ( u ) e σ 1 σ ( z u ) d u .
From r ( d ) = j = 1 m θ j s ( ξ j ) and s ( d ) = i = 1 k ε i r ( λ i ) , we obtain system
I c + δ 1 , σ g ( d ) + c 1 ( d c ) γ 1 1 Γ ( γ 1 ) e σ 1 σ ( d c ) k σ c d r ( u ) e σ 1 σ ( d u ) d u = j = 1 m θ j I c + δ 2 , σ g 1 ( ξ j ) + d 1 j = 1 m θ j ( ξ j c ) γ 2 1 Γ ( γ 2 ) e σ 1 σ ( ξ j c ) k 1 σ j = 1 m θ j c ξ j s ( u ) e σ 1 σ ( ξ j u ) d u ,
I c + δ 2 , σ g 1 ( d ) + d 1 ( d c ) γ 2 1 Γ ( γ 2 ) e σ 1 σ ( d c ) k 1 σ c d s ( u ) e σ 1 σ ( d u ) d u = i = 1 n ε i I c + δ 1 , σ g ( λ i ) + c 1 i = 1 n ε i ( λ i c ) γ 1 1 Γ ( γ 1 ) e σ 1 σ ( λ i c ) k σ i = 1 n ε i c λ i r ( u ) e σ 1 σ ( λ i u ) d u ,
or, using notation (7),
A c 1 B d 1 = P , Γ c 1 + Δ d 1 = Q ,
where
P = j = 1 m θ j I c + δ 2 , σ g 1 ( ξ j ) k 1 σ j = 1 m θ j c ξ j s ( u ) e σ 1 σ ( ξ j u ) d u I c + δ 1 , σ g ( d ) + k σ c d r ( u ) e σ 1 σ ( d u ) d u , Q = i = 1 n ε i I c + δ 1 , σ g ( λ i ) k σ i = 1 n ε i c λ i r ( u ) e σ 1 σ ( λ i u ) d u I c + δ 2 , σ g 1 ( d ) + k 1 σ c d s ( u ) e σ 1 σ ( d u ) d u .
By solving System (14), we have
c 1 = Δ P + B Q D and d 1 = A Q + Γ P D .
Substituting the values of c 1 and d 1 in Equations (10) and (11), respectively, we obtain Solutions (5) and (6). The conversion can be proven by direct computation. The proof is finished. □

3. Existence and Uniqueness Results

Let X = C ( [ c , d ] , R ) be the Banach space of all continuous functions from [ c , d ] to R endowed with the sup norm r = sup { | r ( z ) | : z [ c , d ] } . Let Y = C ( [ c , d ] , R ) be the Banach space endowed with the sup norm s = sup { | s ( z ) | : z [ c , d ] } . Product space ( X × Y , ( r , s ) ) is a Banach space with norm ( r , s ) = r + s .
In view of Lemma 5, we define operator P : X × Y X × Y by
P ( r , s ) ( z ) : = ( P 1 ( r , s ) ( z ) , P 2 ( r , s ) ( z ) ) ,
in which
P 1 ( r , s ) ( z ) = I c + δ 1 , σ h 1 , r , s ( z ) k σ c z r ( u ) e σ 1 σ ( z u ) d u + ( z c ) γ 1 1 D Γ ( γ 1 ) e σ 1 σ ( z c ) [ Δ ( j = 1 m θ j I c + δ 2 , σ h 2 , r , s ( ξ j ) k 1 σ j = 1 m θ j c ξ j s ( u ) e σ 1 σ ( ξ j u ) d u I c + δ 1 , σ h 1 , r , s ( d ) + k σ c d r ( u ) e σ 1 σ ( d u ) d u ) + B ( i = 1 n ε i I c + δ 1 , σ h 1 , r , s ( λ i ) I c + δ 2 , σ h 2 , r , s ( d ) k σ i = 1 n ε i c λ i r ( u ) e σ 1 σ ( λ i u ) d u + k 1 σ c d s ( u ) e σ 1 σ ( d u ) d u ) ] ,
and
P 2 ( r , s ) ( z ) = I c + δ 2 , σ h 2 , r , s ( z ) k 1 σ c z s ( u ) e σ 1 σ ( z u ) d u + ( z c ) γ 2 1 | D | Γ ( γ 2 ) e σ 1 σ ( z c ) [ A ( i = 1 n ε i I c + δ 1 , σ h 1 , r , s ( λ i ) k σ i = 1 n ε i c λ i r ( u ) e σ 1 σ ( λ i u ) d u I c + δ 2 , σ h 2 , r , s ( d ) + k 1 σ c d s ( u ) e σ 1 σ ( d u ) d u ) + Γ ( j = 1 m θ j I c + δ 2 , σ h 2 , r , s ( ξ j ) k 1 σ j = 1 m θ j c ξ j s ( u ) e σ 1 σ ( ξ j u ) d u I c + δ 1 , σ h 1 , r , s ( d ) + k σ c d r ( u ) e σ 1 σ ( d u ) d u ) ] ,
where h 1 , r , s ( z ) = h 1 ( z , r ( z ) , s ( z ) ) and h 2 , r , s ( z ) = h 2 ( z , r ( z ) , s ( z ) ) .
For convenience, the following notations are applied:
A 1 = ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) + ( d c ) γ 1 1 | D | Γ ( γ 1 ) Δ ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) + B i = 1 n | ε i | ( λ i c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) , A 2 = ( d c ) γ 1 1 | D | Γ ( γ 1 ) Δ j = 1 m | θ j | ( ξ j c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) + B ( d c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) , A 3 = | k | σ ( d c ) + ( d c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ | k 1 | σ j = 1 m | θ j | ( ξ j c ) + | k | σ ( d c ) + B | k | σ i = 1 n | ε i | ( λ i c ) + | k 1 | σ ( d c ) ] ,
B 1 = ( d c ) γ 2 1 | D | Γ ( γ 2 ) A i = 1 n | ε i | ( λ i c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) + Γ ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) , B 2 = ( d c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) + ( d c ) γ 2 1 | D | Γ ( γ 2 ) A ( d c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) + Γ j = 1 m | θ j | ( ξ j c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) , B 3 = | k 1 | σ ( d c ) + ( d c ) γ 2 1 | D | Γ ( γ 2 ) [ A | k | σ i = 1 n | ε i | ( λ i c ) + | k 1 | σ ( d c ) + Γ | k 1 | σ j = 1 m | θ j | ( ξ j c ) + | k | σ ( d c ) ] .
Now, Banach’s fixed-point theorem is applied to prove an existence and uniqueness result.
Lemma 6.
(Banach fixed point theorem) [22] Let G be a closed set in X and H : G G satisfies
| H u 1 H u 2 | λ | u 1 u 2 | , f o r s o m e λ ( 0 , 1 ) , a n d f o r a l l u 1 , u 2 G .
Then, H admits a unique fixed point in G.
Theorem 1.
Let D 0 and h 1 , h 2 : [ c , d ] × R 2 R be two functions satisfying
( G 1 )
there exist 1 , 2 > 0 , such that, for all z [ c , d ] and r i , s i R , i = 1 , 2 , we have
| h 1 ( z , r 1 , s 1 ) h 1 ( z , r 2 , s 2 ) | 1 ( | r 1 r 2 | + | s 1 s 2 | ) , | h 2 ( z , r 1 , s 1 ) h 2 ( z , r 2 , s 2 ) | 2 ( | r 1 r 2 | + | s 1 s 2 | ) .
Then, a unique solution of Problem (1) is obtained provided that
1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + B 3 < 1 ,
where A i , B i , i = 1 , 2 , 3 are presented by (18) and (19), respectively.
Proof. 
We converted Problem (1) into fixed-point problem ( r , s ) = P ( r , s ) ( z ) in which operator P is defined as in (15). Using Banach’s theorem, we obtain a unique fixed point of operator P , and this completes the proof. Let sup z [ c , d ] | h 1 ( z , 0 , 0 ) | = S 1 < and sup z [ c , d ] | h 2 ( z , 0 , 0 ) | = S 2 < . Next, assume that B r = { ( r , s ) X × Y ; ( r , s ) r } , in which
r S 1 ( A 1 + B 1 ) + S 2 ( A 2 + B 2 ) 1 [ 1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + B 3 ] .
B r is a bounded, closed, and convex subset of X × Y . First, we indicate that P ( B r ) B r . For all ( r , s ) B r and z [ c , d ] , applying condition ( G 1 ) , we obtain
| h 1 , r , s ( z ) | = | h 1 ( z , r ( z ) , s ( z ) ) | | h 1 ( z , r ( z ) , s ( z ) ) h 1 ( z , 0 , 0 ) | + | h 1 ( z , 0 , 0 ) | 1 ( | r ( z ) | + | s ( z ) | ) + S 1 1 ( r + s ) + S 1 1 r + S 1 ,
and
| h 2 , r , s ( z ) | = | h 2 ( z , r ( z ) , s ( z ) ) | 2 r + S 2 .
Thus for ( r , s ) B r and z [ c , d ] , and using the fact that | e σ 1 σ z | 1 , we have
| P 1 ( r , s ) ( z ) | I c + δ 1 , σ | h 1 , r , s ( z ) | + | k | σ c z | r ( u ) | e σ 1 σ ( z u ) d u + ( z c ) γ 1 1 | D | Γ ( γ 1 ) e σ 1 σ ( z c ) [ Δ ( j = 1 m θ j I c + δ 2 , σ | h 2 , r , s ( ξ j ) | + | k 1 | σ j = 1 m θ j c ξ j | s ( u ) | e σ 1 σ ( ξ j u ) d u + I c + δ 1 , σ | h 1 , r , s ( d ) | + | k | σ c d r ( u ) e σ 1 σ ( d u ) d u ) + B ( i = 1 n | ε i | I c + δ 1 , σ | h 1 , r , s ( λ i ) | + I c + δ 2 , σ | h 2 , r , s ( d ) | + | k | σ i = 1 n | ε i | c λ i | r ( u ) | e σ 1 σ ( λ i u ) d u + | k 1 | σ c d | s ( u ) | e σ 1 σ ( d u ) d u ) ] ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) ( 1 r + S 1 ) + | k | σ ( d c ) r + ( d c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( j = 1 m | θ j | ( ξ j c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) ( 2 r + S 2 ) + r | k 1 | σ j = 1 m | θ j | ( ξ j c ) + ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) ( 1 r + S 1 ) + r | k | ( d c ) σ ) + B ( i = 1 n | ε i | ( λ i c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) ( 1 r + S 1 ) + r | k | σ i = 1 n | ε i | ( λ i c ) + ( d c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) ( 2 r + S 2 ) + r | k 1 | ( d c ) σ ) ] = ( 1 r + S 1 ) ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) + ( d c ) γ 1 1 | D | Γ ( γ 1 ) Δ ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) + B i = 1 n | ε i | ( λ i c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) + ( 2 r + S 2 ) ( d c ) γ 1 1 | D | Γ ( γ 1 ) Δ j = 1 m | θ j | ( ξ j c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) + B ( d c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) + r { | k | σ ( d c ) + ( d c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ | k 1 | σ j = 1 m | θ j | ( ξ j c ) + | k | σ ( d c ) + B | k | σ i = 1 n | ε i | ( λ i c ) + | k 1 | σ ( d c ) } = ( 1 r + S 1 ) A 1 + ( 2 r + S 2 ) A 2 + r A 3 .
Consequently, we have
P 1 ( r , s ) ( 1 r + S 1 ) A 1 + ( 2 r + S 2 ) A 2 + r A 3 .
Similarly, we obtain that
P 2 ( r , s ) ( 1 r + S 1 ) B 1 + ( 2 r + S 2 ) B 2 + r B 3 .
Hence, we have
P ( r , s ) 1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + B 3 r + ( A 1 + B 1 ) S 1 + ( A 2 + B 2 ) S 2 r .
Therefore, P ( B r ) B r .
Now, we indicate that P : X × Y X × Y is a contraction mapping. Due to condition ( G 1 ) for all ( r 1 , s 1 ) , ( r 2 , s 2 ) X × Y and z [ c , d ] , we obtain
| P 1 ( r 1 , s 1 ) ( z ) P 2 ( r 2 , s 2 ) ( z ) | I c + δ 1 , σ | h 1 , r 1 , s 1 h 1 , r 2 , s 2 | ( z ) + | k | σ c z | r 1 ( u ) r 2 ( u ) | d u + ( d c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( j = 1 m | θ j | I c + δ 2 , σ | h 2 , r 1 , s 1 h 1 , r 2 , s 2 | ( ξ j ) + | k 1 | σ j = 1 m | θ j | c ξ j | s 1 ( u ) s 2 ( u ) | d u + I c + δ 1 , σ | h 1 , r 1 , s 1 h 1 , r 2 , s 2 | ( d ) + | k | σ c d | r 1 ( u ) r 2 ( u ) | d u ) + B ( i = 1 n ε i I c + δ 1 , σ | h 1 , r 1 , s 1 h 1 , r 2 , s 2 | ( λ i ) + | k | σ i = 1 n | ε i | c λ i | r 1 ( u ) r 2 ( u ) | d u + I c + δ 2 , σ | h 2 , r 1 , s 1 h 2 , r 2 , s 2 | ( d ) + | k 1 | σ c d | s 1 ( u ) s 2 ( u ) | d u ) ] 1 ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) ( r 1 r 2 + s 1 s 2 ) + | k | ( d c ) σ r 1 r 2 + ( d c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( 2 ( r 1 r 2 + s 1 s 2 ) σ δ 2 Γ ( δ 2 + 1 ) j = 1 m | θ j | ( ξ j c ) δ 2 + | k 1 | σ j = 1 m | θ j | ( ξ j c ) s 1 s 2 + ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) 1 ( r 1 r 2 ) + s 1 s 2 ) + | k | ( d c ) σ r 1 r 2 ) + B ( 1 ( r 1 r 2 + s 1 s 2 ) σ δ 1 Γ ( δ 1 + 1 ) i = 1 n ε i ( λ i c ) δ 1 + | k | σ i = 1 n | ε i | ( λ i c ) r 1 r 2 + ( d c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) 2 ( r 1 r 2 + s 1 s 2 ) + | k 1 | ( d c ) σ s 1 s 2 ) ( 1 A 1 + 2 A 2 ) ( r 1 r 2 + s 1 s 2 ) + A 3 ( r 1 r 2 + s 1 s 2 ) = ( 1 A 1 + 2 A 2 + A 3 ) ( r 1 r 2 + s 1 s 2 ) ;
hence,
P 1 ( r 1 , s 1 ) P 1 ( r 2 , s 2 ) ( 1 A 1 + 2 A 2 + A 3 ) ( r 1 r 2 + s 1 s 2 ) .
Similarly, we obtain
P 2 ( r 1 , s 1 ) P 2 ( r 2 , s 2 ) ( 1 B 1 + 2 B 2 + B 3 ) ( r 1 r 2 + s 1 s 2 ) .
Combining (22) and (23), we have
P ( r 1 , s 1 ) P ( r 2 , s 2 ) 1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + B 3 × ( r 1 r 2 + s 1 s 2 ) .
Since 1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + B 3 < 1 , operator P is contraction mapping. Consequently, applying Banach’s fixed-point theorem, a unique fixed point of operator P is obtained that is a solution of Problem (1). The proof is completed. □
Now, we apply the Leray–Schauder alternative to obtain our first existence result.
Lemma 7.
(Leray–Schauder nonlinear alternative [23]). Let set Ω be closed bounded convex in X, and O an open set contained in Ω with 0 O . Then, for continuous and compact T , U ¯ Ω either
( a )
T admits a fixed–point in U ¯ or
( aa )
u U and μ ( 0 , 1 ) with u = μ T ( u ) .
Theorem 2.
Assume that D 0 and h 1 , h 2 : [ c , d ] × R 2 R are continuous functions satisfying
( G 2 )
There exist r i , s i 0 for i = 1 , 2 and r 0 , s 0 > 0 such that for any r , s R , we have
| h 1 ( z , r , s ) | r 0 + r 1 | r | + r 2 | s | , | h 2 ( z , r , s ) | s 0 + s 1 | r | + s 2 | s | .
If ( A 1 + B 1 ) r 1 + ( A 2 + B 2 ) s 1 + A 3 + B 3 < 1 and ( A 1 + B 1 ) r 2 + ( A 2 + B 2 ) s 2 + A 3 + B 3 < 1 , where A i , B i for i = 1 , 2 , 3 are presented by (18) and (19), respectively, then Problem (1) contains at least one solution on [ c , d ] .
Proof. 
Since functions h 1 , h 2 are continuous on [ c , d ] × R 2 , operator P is also continuous. Now, the completely continuous property of operator P is shown. Let B ε = { ( r , s ) X × Y : ( r , s ) ε } . Thus, for all ( r , s ) B ε , there exist D 1 , D 2 > 0 , such that | h 1 , r , s ( z ) | = | h 1 ( z , r ( z ) , s ( z ) ) | D 1 and | h 2 , r , s ( z ) | = | h 2 ( z , r ( z ) , s ( z ) ) | D 2 . Hence, for all ( r , s ) B ε , we have
| P 1 ( r , s ) ( z ) | I c + δ 1 , σ | h 1 , r , s ( z ) | + | k | σ c z | r ( u ) | d u + ( d c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( j = 1 m | θ j | I c + δ 2 , σ | h 2 , r , s ( ξ j ) | + | k 1 | σ j = 1 m | θ j | c ξ j | s ( u ) | d u + I c + δ 1 , σ | h 1 , r , s ( d ) | + | k | σ c d | r ( u ) d u ) + B ( j = 1 m | ε i | I c + δ 1 , σ | h 1 , r , s ( λ i ) | + | k | σ i = 1 n | ε i | c λ i | r ( t ) | d t + I c + δ 2 , σ | h 2 , r , s ( d ) | + | k 1 | σ c d | s ( t ) | d t ) ] D 1 ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) + | k | ( d c ) r σ + ( d c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( D 2 σ δ 2 Γ ( δ 2 + 1 ) j = 1 m | θ j | ( ξ j c ) δ 2 + | k 1 | r σ j = 1 m | θ j | ( ξ j c ) + D 1 ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) + r | k | ( d c ) σ ) + B ( D 1 σ δ 1 Γ ( δ 1 + 1 ) i = 1 n | ε i | ( λ i c ) δ 1 + D 2 ( d c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) + r | k | σ i = 1 n | ε i | ( λ i c ) + r | k 1 | ( d c ) σ ) ] = A 1 D 1 + A 2 D 2 + r A 3 ,
which implies that
P 1 ( r , s ) A 1 D 1 + A 2 D 2 + r A 3 .
Similarly, we obtain that
P 2 ( r , s ) B 1 D 1 + B 2 D 2 + r B 3 .
Consequently,
P ( r , s ) ( A 1 + B 1 ) D 1 + ( A 2 + B 2 ) D 2 + r ( A 3 + B 3 ) ,
and we conclude that P is uniformly bounded.
Next, the equicontinuous property of operator P is proven. Let z 1 , z 2 [ c , d ] with z 1 < z 2 . Thus, we have
| P 1 ( r , s ) ( z 2 ) P 1 ( r , s ) ( z 1 ) | 1 σ δ 1 Γ ( δ 1 ) c z 2 [ ( z 2 u ) δ 1 1 ( z 1 u ) δ 1 1 ] | h 1 ( u , r ( u ) , s ( u ) ) | d u + 1 σ δ 1 Γ ( δ 1 ) z 1 z 2 ( z 2 u ) δ 1 1 | h 1 ( u , r ( u ) , s ( u ) ) | d u + | k | σ r ( z 2 z 1 ) + ( z 2 c ) γ 1 1 ( z 1 c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( D 2 σ δ 2 Γ ( δ 2 + 1 ) j = 1 m | θ j | ( ξ j c ) δ 2 + | k 1 | r σ j = 1 m | θ j | ( ξ j c ) + D 1 σ δ 1 Γ ( δ 1 + 1 ) + r | k | ( d c ) σ ) + B ( D 1 σ δ 1 Γ ( δ 1 + 1 ) i = 1 n ε i ( λ i c ) + | k | r σ i = 1 n | ε i | ( λ i c ) + D 2 ( d c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) + r | k 1 | ( d c ) σ ) ] D 1 σ δ 1 Γ ( δ 1 + 1 ) | ( z 2 c ) δ 1 ( z 1 c ) δ 1 + 2 ( z 2 z 1 ) δ 1 + | k | σ r ( z 2 z 1 ) + ( z 2 c ) γ 1 1 ( z 1 c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( D 2 σ δ 2 Γ ( δ 2 + 1 ) j = 1 m | θ j | ( ξ j c ) δ 2 + | k 1 | r σ j = 1 m | θ j | ( ξ j c ) + D 1 σ δ 1 Γ ( δ 1 + 1 ) + r | k | ( d c ) σ ) + B D 1 σ δ 1 Γ ( δ 1 + 1 ) i = 1 n | ε i | ( λ i c ) + | k | r ( λ i c ) σ + D 2 ( d c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) + r | k 1 | ( d c ) σ ] .
Thus, we have
| P 1 ( r , s ) ( t 2 ) P 1 ( r , s ) ( t 1 ) | 0 , as t 1 t 2 .
Similarly, we have
| P 2 ( r , s ) ( t 2 ) P 2 ( r , s ) ( t 1 ) | 0 .
Hence, set P ( B r ) is equicontinuous. Consequently, due to the Arzelá-Ascoli theorem, we obtain that P is completely continuous.
Lastly, the boundedness property of set Θ = { ( r , s ) X × Y : ( r , s ) = λ P ( r , s ) , 0 λ 1 } is showed. Let ( r , s ) Θ , then ( r , s ) = λ P ( r , s ) . Hence, for all z [ c , d ] we have
r ( z ) = λ P 1 ( r , s ) ( z ) , s ( z ) = λ P 2 ( r , s ) ( z ) .
Thus, we have
r ( r 0 + r 1 r + r 2 s ) A 1 + ( s 0 + s 1 r + s 2 s ) A 2 + ( r + s ) A 3 , s ( r 0 + r 1 r + r 2 s ) B 1 + ( s 0 + s 1 r + s 2 s ) B 2 + ( r + s ) B 3 .
Thus, we have
r + s ( A 1 + B 1 ) r 0 + ( A 2 + B 2 ) s 0 + [ ( A 1 + B 1 ) r 1 + ( A 2 + B 2 ) s 1 + A 3 + B 3 ] r + ( A 1 + B 1 ) r 2 + ( A 2 + B 2 ) s 2 + A 3 + B 3 s .
Consequently, we have
( r , s ) ( A 1 + B 1 ) r 0 + ( A 2 + B 2 ) s 0 D * ,
where D * = min { 1 [ ( A 1 + B 1 ) r 1 ( A 2 + B 2 ) s 1 ( A 3 + B 3 ) ] , 1 [ ( A 1 + B 1 ) r 2 ( A 2 + B 2 ) s 2 ( A 3 + B 3 ) ] } Hence, the set Θ is bounded, and via the Leray–Schader alternative, at least one fixed point of operator P is obtained, and this completes the proof. □
Krasnosel’skiĭ’s fixed-point theorem is applied to obtain our second existence result.
Lemma 8.
(Krasnosel’skiĭ fixed-point theorem) [24] Let N indicates a closed, bounded, convex and nonempty subset of a Banach space Y, and C , D are operators, such that (i) C x + D y N where x , y N , (ii) C is compact and continuous, and (iii) D is contraction mapping. Then, there exists z N , such that z = C z + D z .
Theorem 3.
Assume that D 0 and h 1 , h 2 : [ c , d ] × R 2 R are continuous functions. In addition, we suppose that
( G 3 )
There exist non-negative functions ϕ 1 , ϕ 2 C ( [ c , d ] , R + ) , such that
| h 1 ( z , r , s ) | ϕ 1 ( z ) , | h 2 ( z , r , s ) | ϕ 2 ( z ) for all ( z , r , s ) [ c , d ] × R × R .
Then, at least one solution of Problem (1) is obtained on [ c , d ] , provided that
A 3 + B 3 < 1 .
Proof. 
First, we decompose operator P into four operators:
M ( r , s ) ( z ) = k σ c z r ( u ) e σ 1 σ ( z u ) d u + ( z c ) γ 1 1 D Γ ( γ 1 ) e σ 1 σ ( z c ) [ Δ ( k 1 σ j = 1 m θ j c ξ j s ( u ) e σ 1 σ ( ξ j u ) d u + k σ c d r ( u ) e σ 1 σ ( d c ) d u ) + B ( k σ i = 1 n ε i c λ i r ( u ) e σ 1 σ ( λ i u ) d u + k 1 σ c d s ( u ) e σ 1 σ ( d u ) d u ) ] ,
N ( r , s ) ( z ) = I c + δ 1 , σ h 1 , r , s ( z ) + ( z c ) γ 1 1 D Γ ( γ 1 ) e σ 1 σ ( z c ) [ Δ j = 1 m θ j I c + δ 2 , σ h 2 , r , s ( ξ j ) I c + δ 1 , σ h 1 , r , s ( d ) + B i = 1 n ε i I c + δ 1 , σ h 1 , r , s ( λ i ) I c + δ 2 , σ h 2 , r , s ( d ) ] ,
S ( r , s ) ( z ) = k 1 σ c z s ( u ) e σ 1 σ ( z u ) d u + ( z c ) γ 2 1 D Γ ( γ 2 ) e σ 1 σ ( z c ) [ A k σ i = 1 n ε i c λ i r ( u ) e σ 1 σ ( λ i u ) d u + k 1 σ c d s ( u ) e σ 1 σ ( d u ) d u ) + Γ ( k 1 σ j = 1 m θ j c ξ j s ( u ) e σ 1 σ ( ξ j u ) d u + k σ c d r ( u ) e σ 1 σ ( d u ) d u ) ] ,
R ( r , s ) ( z ) = I c + δ 2 , σ h 2 , r , s ( z ) + ( z c ) γ 2 1 D Γ ( γ 2 ) e σ 1 σ ( z c ) [ A i = 1 n ε i I c + δ 1 , σ h 1 , r , s ( λ i ) I c + δ 2 , σ h 2 , r , s ( d ) + Γ j = 1 m θ j I c + δ 2 , σ h 2 , r , s ( ξ j ) I c + δ 1 , σ h 2 , r , s ( d ) ] ,
Thus, P 1 ( r , s ) ( z ) = M ( r , s ) ( z ) + N ( r , s ) ( z ) and P 2 ( r , s ) ( z ) = S ( r , s ) ( z ) + R ( r , s ) ( z ) . Let B ε = { ( r , s ) X × Y ; ( r , s ) ε } , in which
ε ( A 1 + B 1 ) ϕ 1 + ( A 2 + B 2 ) ϕ 2 1 ( A 3 + B 3 ) .
First, we indicate that P 1 ( r , s ) + P 2 ( r , s ) B ε , where ( r , s ) B ε . In view of the proof of Theorem 2, we have
| M ( r , s ) ( z ) + N ( r , s ) ( z ) | A 1 ϕ 1 + A 2 ϕ 2 + ε A 3 , | S ( r , s ) ( z ) + R ( r , s ) ( z ) | B 1 ϕ 1 + B 2 ϕ 2 + ε B 3 ,
which leads to the fact that
P 1 ( r , s ) + P 2 ( r , s ) ( A 1 + B 1 ) ϕ 1 + ( A 2 + B 2 ) ϕ 2 + ε ( A 3 + B 3 ) ε .
Hence, P 1 ( r , s ) + P 2 ( r , s ) B ε and condition ( i ) of Lemma 8 is obtained.
Now, it is proven that operator ( M , S ) is contraction mapping. For ( r 1 , s 1 ) , ( r 2 , s 2 ) B ε , we have
| M ( r 1 , s 1 ) ( z ) M ( r 2 , s 2 ) ( z ) | | k | σ c d | r 1 ( u ) r 2 ( u ) | d u + ( d c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( | k 1 | σ j = 1 m | θ j | c ξ j | s 1 ( u ) s 2 ( u ) | d u + | k | σ c d | r 1 ( u ) r 2 ( u ) | d u ) + B ( | k | σ i = 1 n | ε i | c λ i | r 1 ( u ) r 2 ( u ) | d u + | k 1 | σ c d | s 1 ( u ) s 2 ( u ) | d u ) ] | k | ( d c ) σ r 1 r 2 + ( d c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( | k 1 | σ j = 1 m | θ j | ( ξ j c ) s 1 s 2 + | k | ( d c ) σ r 1 r 2 ) + B | k | σ i = 1 n | ε i | ( λ i c ) r 1 r 2 + | k 1 | ( d c ) σ s 1 s 2 ] { | k | ( d c ) σ + ( d c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ | k 1 | σ j = 1 m | θ j | ( ξ j c ) + | k | ( d c ) σ + B | k | σ i = 1 n | ε i | ( λ i c ) + | k 1 | ( d c ) σ ] } ( r 1 r 2 + s 1 s 2 ) = A 3 ( r 1 r 2 + s 1 s 2 ) ,
and hence
M ( r 1 , s 1 ) M ( r 2 , s 2 ) A 3 ( r 1 r 2 + s 1 s 2 ) .
Similarly, we have
S ( r 1 , s 1 ) S ( r 2 , s 2 ) B 3 ( r 1 r 2 + s 1 s 2 ) .
Consequently, we obtain
( M , S ) ( r 1 , s 1 ) ( M , S ) ( r 2 , s 2 ) ( A 3 + B 3 ) ( r 1 r 2 + s 1 s 2 ) ,
which, by (25), implies that ( M , S ) is a contraction, and condition ( i i i ) of Lemma 8 is obtained.
In the next step, condition ( i i ) of Lemma 8 is considered for operator ( N , R ) . By applying the continuity property of functions h 1 and h 2 , we obtain that operator ( N R ) is continuous. For all ( r , s ) B ε , due to the proof of Theorem 2, we have
| N ( r , s ) ( z ) | ϕ 1 ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) + ( d c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( ϕ 2 σ δ 2 Γ ( δ 2 + 1 ) j = 1 m | θ j | ( ξ j c ) δ 2 + ϕ 1 ( d c ) δ 1 σ δ 1 Γ ( δ 1 + 1 ) ) + B ( ϕ 1 σ δ 1 Γ ( δ 1 + 1 ) i = 1 n | ε i | ( λ i c ) δ 1 + ϕ 2 ( d c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) ) ] = A 1 ϕ 1 + A 2 ϕ 2 ,
and hence
N ( r , s ) A 1 ϕ 1 + A 2 ϕ 2 .
Similarly,
R ( r , s ) B 1 ϕ 1 + B 2 ϕ 2 .
Consequently, we have
( N , R ) ( r , s ) ( A 1 + B 1 ) ϕ 1 + ( A 2 + B 2 ) ϕ 2 ,
thus, set ( N , R ) B ε is uniformly bounded.
Lastly, we show that set ( N , R ) B ε is equicontinuous. Let z 1 , z 2 [ c , d ] , such that z 1 < z 2 . For all ( r , s ) B ε , due to the equicontinuous property of operators P 1 and P 2 , we can show that | N ( r , s ) ( z 2 ) N ( r , s ) ( z 1 ) | 0 , | R ( r , s ) ( z 2 ) R ( r , s ) ( z 1 ) | 0 az z 1 z 2 . Consequently, set ( N , R ) B ε is equicontinuous. Now, using Arzelá-Ascoli theorem, the compactness property of operator ( N , R ) on B ε is obtained. Hence, by using Lemma 8, at least one solution of Problem (1) is obtained on [ c , d ] . The proof is finished. □

4. Existence Results in Banach Space

In this section, the technique of measure of noncompactness is applied to construct an existence result concerning Problem (1). First, some elementary concepts about the notion of the measure of noncompactness are recalled.
Definition 6.
Assume that E is a Banach space, and M E indicates the set of all bounded subsets of E. Mapping Ω : M E [ 0 , ) defined via [25]
Ω ( N ) = inf ε > 0 : N i = 1 m N i , diam ( N i ) ε ,
is called the Kuratowski measure of noncompactness.
Measure of noncompactness Ω comprises the following properties [25]:
( 1 )
Ω ( N ) = 0 N ¯ is compact.
( 2 )
Ω ( N ) = Ω ( N ¯ ) .
( 3 )
N 1 N 2 Ω ( N 1 ) Ω ( N 2 ) .
( 4 )
Ω ( N 1 + N 2 ) Ω ( N 1 ) + Ω ( N 2 ) .
( 5 )
Ω ( λ N ) = | λ | Ω ( N ) , λ R .
( 6 )
Ω ( conv N ) = Ω ( N ) .
Lemma 9.
Assume that G C ( [ c , d ] , E ) is a bounded and equicontinuous subset. Then, function z Ω ( G ( z ) ) is continuous on [ c , d ] [26]:
Ω C ( G ) = max z [ c , d ] Ω ( G ( z ) ) ,
and
Ω c d u ( s ) d s c d Ω ( G ( s ) ) d s ,
where G ( s ) = { u ( s ) : u G } , s [ c , d ] .
Theorem 4.
(Mönch’s fixed point theorem) Let set V be a closed, bounded, and convex subset in a Banach space Y, such that 0 Y , and let T V V be continuous mapping satisfying [27]
V ¯ = c o n v ¯ T ( V ¯ ) , o r V ¯ = T ( V ¯ ) { 0 } Ω ( V ¯ ) = 0 ,
for all subsets V ¯ of V . Then, T contains a fixed point.
Definition 7.
Function h : [ c , d ] × E E satisfies Carathéodory conditions if [28]:
( i )
h ( z , u ) is measurable with respect to z for all u E ,
( i i )
h ( z , u ) is continuous with respect to u E for z [ c , d ] .
Theorem 5.
Assume that A 3 + B 3 < 1 . Moreover, assume that
( L 1 )
Caratheodory conditions are satisfied by functions h 1 , h 2 : [ c , d ] × E × E E ;
( L 2 )
There exist Ω h 1 , Ω h 2 C ( [ c , d ] , R + ) and ψ C ( R + , R + ) with ψ that is nondecreasing, such that
h i ( z , r , s ) Ω h i ( z ) ψ ( ( r , s ) ) , i = 1 , 2 f o r a . e z [ c , d ] a n d r , s E .
( L 3 )
For each bounded set G E × E and for all z [ c , d ] , we have
Ω ( h i ( z , G ) ) Ω h i ( z ) Ω ( G ) .
If
max Ω h 1 * A 1 + Ω h 2 * A 2 + A 3 , Ω h 1 * B 1 + Ω h 2 * B 2 + B 3 < 1 ,
where Ω h i * = sup z [ c , d ] Ω h i ( z ) , i = 1 , 2 ; then, Problem (1) has at least one solution on [ c , d ] .
Proof. 
Let operators P , P 1 , P 2 : X × Y X × Y be defined by (15)–(17), respectively. One can see that the fixed point of operator P is a solution of Problem (1). Define
B r = { ( s , r ) X × Y : ( s , r ) r } ,
in which r Ω h 1 * ψ ( r ) ( A 1 + B 1 ) + Ω h 2 * ψ ( r ) ( A 2 + B 2 ) 1 ( A 3 + B 3 ) .
Step 1.F maps B r into itself.
For all ( r , s ) B r and z [ c , d ] , we obtain
P 1 ( r , s ) ( z ) I c + δ 1 , σ h 1 , r , s ( z ) + | k | σ c z u ( s ) d s + ( d c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( j = 1 m | θ j | I c + δ 2 , σ h 2 , r , s ( ξ j ) + | k 1 | σ j = 1 m | θ j | c ξ j s ( t ) d t + I c + δ 1 , σ h 1 , r , s ( d ) + | k | σ c d r ( t ) d t ) + B ( j = 1 m | ε i | I c + δ 1 , σ h 1 , r , s ( λ i ) + | k | σ j = 1 m | ε i | c λ i r ( t ) d t + I c + δ 2 , σ h 2 , r , s ( d ) + | k 1 | σ c d s ( t ) d t ) ] Ω h 1 * ψ ( r ) A 1 + Ω h 2 * ψ ( r ) A 2 + r A 3 ,
and
P 2 ( r , s ) ( z ) Ω h 1 * ψ ( r ) B 1 + Ω h 2 * ψ ( r ) B 2 + r B 3 .
Hence,
P ( r , s ) Ω h 1 * ψ ( r ) ( A 1 + B 1 ) + Ω h 2 * ψ ( r ) ( A 2 + B 2 ) + r ( A 3 + B 3 ) r .
Hence, operator P maps ball B r into itself.
Step 2.The operator P is continuous.
Let { ( r n , s n ) } B r such that ( r n , s n ) ( r , s ) as n . We indicate that P ( r n , s n ) P ( r , s ) 0 . Since functions h 1 and h 2 satisfy Carathéodory conditions, we conclude that P 1 ( r n , s n ) P 1 ( r , s ) and P 2 ( r n , s n ) P 2 ( r , s ) as n . Now, due to condition ( L 2 ) and the Lebesgue dominated convergence theorem, we obtain that P 1 ( r n , s n ) P 1 ( r , s ) , P 2 ( r n , s n ) P 2 ( r , s ) 0 as n . Consequently, P ( r n , s n ) P ( r , s ) 0 , which is implies that P is continuous on B r .
Step 3.Operator P is equicontinuous.
Let l 1 , l 2 [ c , d ] with l 1 < l 2 and ( r , s ) B r . Thus, we have
P 1 ( r , s ) ( l 2 ) P 1 ( r , s ) ( l 1 ) 1 σ δ 1 Γ ( δ 1 ) c l 2 [ ( l 2 u ) δ 1 1 ( l 1 u ) δ 1 1 ] h 1 ( u , r ( u ) , s ( u ) ) d u + 1 σ δ 1 Γ ( δ 1 ) l 1 l 2 ( l 2 u ) δ 1 1 h 1 ( u , r ( u ) , s ( u ) ) d u + | k | σ r ( l 2 l 1 ) + ( l 2 c ) γ 1 1 ( l 1 c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( Ω h 2 * ψ ( r ) σ δ 2 Γ ( δ 2 + 1 ) j = 1 m | θ j | ( ξ j c ) δ 2 + | k 1 | r σ j = 1 m | θ j | ( ξ j c ) + Ω h 1 * ψ ( r ) σ δ 1 Γ ( δ 1 + 1 ) + r | k | ( d c ) σ ) + B ( Ω h 2 * ψ ( r ) σ δ 1 Γ ( δ 1 + 1 ) i = 1 n | ε i | ( λ i c ) δ 1 + | k | r ( λ i c ) σ | ε i | + Ω h 1 * ψ ( r ) ( d c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) + r | k 1 | ( d c ) σ ) ] Ω h 1 * ψ ( r ) σ δ 1 Γ ( δ 1 + 1 ) | ( l 2 c ) δ 1 ( l 1 c ) δ 1 + 2 ( l 2 l 1 ) δ 1 + | k | σ r ( l 2 l 1 ) + ( l 2 c ) γ 1 1 ( l 1 c ) γ 1 1 | D | Γ ( γ 1 ) [ Δ ( Ω h 2 * ψ ( r ) σ δ 2 Γ ( δ 2 + 1 ) j = 1 m | θ j | ( ξ j c ) δ 2 + | k 1 | r σ j = 1 m | θ j | ( ξ j c ) + Ω h 1 * ψ ( r ) σ δ 1 Γ ( δ 1 + 1 ) + r | k | ( d c ) σ ) + B ( Ω h 1 * ψ ( r ) σ δ 1 Γ ( δ 1 + 1 ) i = 1 n | ε i | ( λ i c ) δ 1 + | k | r ( λ i c ) σ | ε i | + Ω h 2 * ψ ( r ) ( d c ) δ 2 σ δ 2 Γ ( δ 2 + 1 ) + r | k 1 | ( d c ) σ ) ] .
As l 2 l 1 , we obtain that P 1 ( r , s ) ( l 2 ) P 1 ( r , s ) ( l 1 ) 0 . Similarly, P 2 ( r , s ) ( l 2 ) P 2 ( r , s ) ( l 1 ) 0 as l 2 l 1 . Consequently, P ( r , s ) ( l 2 ) P ( r , s ) ( l 1 ) 0 , as l 2 tends to l 1 . Thus P is equicontinuous.
Step 4.Condition (30) of Theorem 4 is satisfied.
Let V 1 = M 1 × M 2 c o n v ¯ ( P 1 ( V 1 ) { 0 } ) and V 2 = N 1 × N 2 c o n v ¯ ( P 2 ( V 2 ) { 0 } ) be two bounded and equicontinuous subsets. Thus, T 1 ( z ) = Ω ( V 1 ( z ) ) and T 2 ( z ) = Ω 2 ( V 2 ( z ) ) are continuous on [ c , d ] . Now, in view of Lemma 9 and ( L 3 ) , we have
T 1 ( z ) = Ω ( V 1 ( z ) ) Ω ( c o n v ¯ ( P 1 ( V 1 ) ( z ) { 0 } ) ) Ω ( P 1 ( V 1 ) ( z ) ) ) Ω 1 σ δ 1 Γ ( δ 1 ) c z e σ 1 σ ( z u ) ( z u ) δ 1 1 h 1 ( u , r ( u ) , s ( u ) ) d u : ( r , s ) V 1 + Ω k σ c z s ( u ) e σ 1 σ ( z u ) d u : s M 2 + ( z c ) γ 1 1 D Γ ( γ 1 ) e σ 1 σ ( z c ) [ Δ ( j = 1 m θ j Ω I c + δ 2 , σ h 1 , r , s ( ξ j ) : ( r , s ) V 1 + Ω k 1 σ j = 1 m θ j c ξ j s ( u ) e σ 1 σ ( ξ j u ) d u : s M 2 + Ω 1 σ δ 1 Γ ( δ 1 ) c d e σ 1 σ ( d u ) ( d u ) δ 1 1 h 1 ( u , r ( u ) , s ( u ) ) d u : ( r , s ) V 1 + Ω k σ c d r ( u ) e σ 1 σ ( d u ) d u : r M 1 ) + B ( i = 1 n Ω ε i I c + δ 1 , σ h 1 , r , s ( λ i ) : ( r , s ) V 1 + Ω { k σ i = 1 n ε i c λ i r ( u ) e σ 1 σ ( λ i u ) d u : r M 1 + Ω 1 σ δ 2 Γ ( δ 2 ) c d e σ 1 σ ( d u ) ( d u ) δ 2 1 h 2 ( u , r ( u ) , s ( u ) ) d u : ( r , s ) V 1 + Ω k 1 σ c d s ( u ) e σ 1 σ ( d u ) d u : s M 2 ) ] T 1 Ω h 1 * A 1 + Ω h 2 * A 2 + A 3 .
Hence,
T 1 T 1 Ω h 1 * A 1 + Ω h 2 * A 2 + A 3 .
It follows that T 1 = 0 . Hence, for all z [ c , d ] T 1 ( z ) = 0 . Similarly, T 2 ( z ) = 0 . Consequently, Ω ( ( V 1 V 2 ) ( z ) ) Ω ( V 1 ( z ) ) = 0 and Ω ( ( V 1 V 2 ) ( z ) ) Ω ( V 2 ( z ) ) = 0 . Thus, V ( z ) = ( V 1 V 2 ) ( z ) is relatively compact in E × E and by Arzelá-Ascoli theorem V is relatively compact in B r × B r . Now by applying Theorem 4, P contains a fixed point on B r × B r which is a solution of the problem (1). The proof is completed. □

5. Some Examples

Now, we present some illustration cases to show the benefits of our theorems.
Example 1.
Consider the following nonlocal boundary value problems of a coupled system of Hilfer generalized proportional fractional differential equations of form
D 1 11 3 2 , 2 3 , 3 4 + 1 12 D 1 11 1 2 , 2 3 , 3 4 r ( z ) = h 1 ( z , r ( z ) , s ( z ) ) , z 1 11 , 13 11 , D 1 11 5 4 , 2 3 , 3 4 + 1 15 D 1 11 1 4 , 2 3 , 3 4 s ( z ) = h 2 ( z , r ( z ) , s ( z ) ) , z 1 11 , 13 11 , r 1 11 = 0 , r 13 11 = 2 21 s 3 11 + 4 23 s 7 11 + 6 25 s 10 11 , s 1 11 = 0 , s 13 11 = 1 31 r 2 11 + 3 41 r 5 11 + 5 61 r 9 11 + 7 71 r 12 11 .
Setting constants from boundary value problem (31) as δ 1 = 3 / 2 , δ 2 = 5 / 4 , η = 2 / 3 , σ = 3 / 4 , k = 1 / 12 , k 1 = 1 / 15 , c = 1 / 11 , d = 13 / 11 , m = 3 , θ 1 = 2 / 21 , θ 2 = 4 / 23 , θ 3 = 6 / 25 , ξ 1 = 3 / 11 , ξ 2 = 7 / 11 , ξ 3 = 10 / 11 , n = 4 , ε 1 = 1 / 31 , ε 2 = 3 / 41 , ε 3 = 5 / 61 , ε 4 = 7 / 71 , λ 1 = 2 / 11 , λ 2 = 5 / 11 , λ 3 = 9 / 11 , λ 4 = 12 / 11 . Then we can calculate γ 1 = 11 / 6 , γ 2 = 7 / 4 , A 0.7945741588 , B 0.2983181613 , Γ 0.1617113429 , Δ 0.8073671886 , D 0.5932716742 , A 1 3.483107763 , A 2 0.6362573874 , A 3 0.3699010850 , B 1 0.3281306250 , B 2 1.755337743 , B 3 0.2927192099
(i)
Consider unbounded Lipschitz functions h 1 , h 2 : [ ( 1 / 11 ) , ( 13 / 11 ) ] × R 2 R given by
h 1 ( z , r , s ) = e ( 11 z 1 ) 2 40 r 2 + 2 | r | 1 + | r | + tan 1 | s | 11 z + 20 + 1 3 z 2 + 2 z ,
h 2 ( z , r , s ) = sin 2 π z 17 sin | r | + 2 s 2 + 3 | s | 54 ( 1 + | s | ) + 1 4 z 3 + 1 2 .
Then, we can compute that
| h 1 ( z , r 1 , s 1 ) h 1 ( z , r 2 , s 2 ) | 1 20 | r 1 r 2 | + 1 21 | s 1 s 2 |
and
| h 2 ( z , r 1 , s 1 ) h 2 ( z , r 2 , s 2 ) | 1 17 | r 1 r 2 | + 1 18 | s 1 s 2 | ,
for all r 1 , r 2 , s 1 , s 2 R and z [ ( 1 / 11 ) , ( 13 / 11 ) ] . By choosing 1 = 1 / 20 , 2 = 1 / 17 , we obtain 1 ( A 1 + B 1 ) + 2 ( A 2 + B 2 ) + A 3 + B 3 0.9938642808 < 1 . By the benefit of Theorem 1, we deduce that the nonlocal boundary value problem of a coupled system of Hilfer generalized proportional fractional differential equations in (31) with h 1 , h 2 given by (32) and (33), respectively, has a unique solution on [ ( 1 / 11 ) , ( 13 / 11 ) ] .
(ii)
Let nonlinear functions h 1 , h 2 : [ ( 1 / 11 ) , ( 13 / 11 ) ] × R 2 R be given by
h 1 ( z , r , s ) = 1 2 cos 28 ( z r s ) + | r | 153 21 ( 1 + r 152 ) e s 12 + s 184 20 ( 1 + | s | 183 ) sin 16 r ,
h 2 ( z , r , s ) = tan 1 ( π z ) + r cos 14 s 11 z + 17 + s 36 19 ( 1 + | s | 35 ) e r 72 .
Then we have
| h 1 ( z , r , s ) | 1 2 + 1 21 | r | + 1 20 | s | , | h 2 ( z , r , s ) | π 2 + 1 18 | r | + 1 19 | s | .
By setting r 0 = 1 / 2 , r 1 = 1 / 21 , r 2 = 1 / 20 , s 0 = π / 2 , s 1 = 1 / 18 , s 2 = 1 / 19 , we obtain ( A 1 + B 1 ) r 1 + ( A 2 + B 2 ) s 1 + A 3 + B 3 0.9769742333 < 1 and ( A 1 + B 1 ) r 2 + ( A 2 + B 2 ) s 2 + A 3 + B 3 0.9790556422 < 1 . By Theorem 2, we conclude that boundary value problem (31) with h 1 , h 2 given by (34) and (35), respectively, has at least one solution on interval [ ( 1 / 11 ) , ( 13 / 11 ) ] .
(iii)
Suppose that nonlinear functions h 1 , h 2 : [ ( 1 / 11 ) , ( 13 / 11 ) ] × R 2 R are appeared by
h 1 ( z , r , s ) = r 8 s 8 1 + r 8 s 8 + tan 1 1 + r 4 s 6 + sin z + 1 3 ,
h 2 ( z , r , s ) = 1 2 z 2 + 2 z + 3 4 e r 2 + 1 4 cos 4 s .
Then, we have
| h 1 ( z , r , s ) | 8 + 3 π 6 + sin z : = ϕ 1 ( z ) and | h 2 ( z , r , s ) | 1 2 z 2 + 2 z + 1 : = ϕ 2 ( z ) .
Since A 3 + B 3 0.6626202949 < 1 , then, from Theorem 3, the nonlocal boundary value problem of a coupled system (31) with h 1 , h 2 given bhy (36) and (37) respectively, has at least one solution on an interval [ ( 1 / 11 ) , ( 13 / 11 ) ] .
(iv)
Let E = { u = ( u 1 , u 2 , , u n , ) : u n 0 } be a Banach space of real sequences converging to zero, endowed with norm u = sup n 1 | u n | . Suppose that h 1 , h 2 : [ ( 1 / 11 ) , ( 13 / 11 ) ] × E 2 E appear through
h 1 ( z , r , s ) = 1 11 z + 7 r n 2 s n 2 1 + | r n s n | + 1 ,
h 2 ( z , r , s ) = 1 5 e z 2 1 + sin ( r n s n ) .
It is easy to see that ( L 1 ) in Theorem 5 holds. In addition, for z [ ( 1 / 11 ) , ( 13 / 11 ) ] , we have
h 1 ( z , r , s ) 1 11 z + 7 ψ ( ( r , s ) ) and h 2 ( z , r , s ) 1 5 e z 2 ψ ( ( r , s ) ) ,
where ψ ( u ) = u + 1 . Therefore, we get Ω h 1 * = 1 / 8 and Ω h 2 * = 1 / 5 and consequently
max Ω h 1 * A 1 + Ω h 2 * A 2 + A 3 , Ω h 1 * B 1 + Ω h 2 * B 2 + B 3 max { 0.9325410329 , 0.6848030866 } = 0.9325410329 < 1 .
The application of Theorem 5 yields that boundary value problem (31) with h 1 , h 2 given by (38) and (39), respectively, has at least one solution on an interval [ ( 1 / 11 ) , ( 13 / 11 ) ] .

6. Conclusions

In the present research work, we investigated the existence and uniqueness of solutions for a new class of coupled system of Hilfer-type generalized proportional fractional differential equations supplemented with nonlocal multipoint boundary conditions. First, we proved an auxiliary result concerning a linear variant of the given problem, helping us in transforming the problem at hand into a fixed-point problem. Then, we proved the existence and uniqueness results in the scalar case by applying Banach’s contraction mapping principle, Krasnosel’skiĭ’s fixed-point theorem, and the Leray–Schauder alternative. Next, we studied the Banach space case, and established an existence result on the basis of Mönch’s fixed-point theorem and the technique of the measure of noncompactness. All obtained results are well-illustrated by numerical examples. Our results are new and enrich the literature on coupled systems of Hilfer-type generalized proportional fractional differential equations.

Author Contributions

Conceptualization, A.S., S.K.N. and J.T.; methodology, A.S., S.K.N. and J.T.; validation, A.S., S.K.N. and J.T.; formal analysis, A.S., S.K.N. and J.T.; writing—original draft preparation, A.S., S.K.N. and J.T.; funding acquisition, J.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by National Science, Research and Innovation Fund (NSRF), and King Mongkut’s University of Technology North Bangkok with contract no. KMUTNB-FF-65-36.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
  2. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies: Amsterdam, The Netherlands, 2006. [Google Scholar]
  3. Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
  4. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
  5. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
  6. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
  7. Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
  8. Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
  9. Atangana, A. Derivative with a New Parameter: Theory, Methods and Applications; Academic Press: San Diego, CA, USA, 2015. [Google Scholar]
  10. Atangana, A.; Koca, I. New direction in fractional differentiation. Math. Nat. Sci. 2017, 1, 18–25. [Google Scholar] [CrossRef] [Green Version]
  11. Atangana, A.; Secer, A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abst. Appl. Anal. 2013, 2013, 279681. [Google Scholar] [CrossRef] [Green Version]
  12. Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-Type Modification of the Hadamard Fractional Derivatives. Adv. Differ. Equ. 2012, 142. Available online: https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2012-142 (accessed on 1 January 2022). [CrossRef] [Green Version]
  13. Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [Google Scholar] [CrossRef] [Green Version]
  14. Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a New Class of Fractional Operators. Adv. Differ. Equ. 2017, 247. Available online: https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-017-1306-z (accessed on 1 January 2022). [CrossRef]
  15. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  16. Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
  17. Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Nisar, K.S. Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. Math. Methods Appl. Sci. 2021, 44, 1438–1455. [Google Scholar] [CrossRef]
  18. Subashini, R.; Jothimani, K.; Nisar, K.S.; Ravichandran, C. New results on nonlocal functional integro-differential equations via Hilfer fractional derivative. Alex. Eng. J. 2020, 59, 2891–2899. [Google Scholar] [CrossRef]
  19. Ahmed, I.; Kumam, P.; Jarad, F.; Borisut, P.; Jirakitpuwapat, W. On Hilfer Generalized Proportional Fractional Derivative. Adv. Differ. Equ. 2020, 329. Available online: https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02792-w (accessed on 1 January 2022). [CrossRef]
  20. Tariboon, J.; Samadi, A.; Ntouyas, S.K. Nonlocal boundary value problems for Hilfer generalized proportional fractional differential equations. Fractal Fract. 2022, 6, 154. [Google Scholar] [CrossRef]
  21. Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
  22. Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
  23. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
  24. Krasnosel’skiĭ, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
  25. Banas, J.; Goebel, K. Measure of Noncompactness in Banach Spaces; Marcel Dekker: New York, NY, USA, 1980. [Google Scholar]
  26. Guo, D.J.; Lakshmikantham, V.; Liu, X. Nonlinear Integral Equations in Abstract Spaces; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
  27. Mönch, H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 1980, 4, 985–999. [Google Scholar] [CrossRef]
  28. Zeidler, E. Nonlinear Functional Analysis and Its Applications, Part II/B: Nonlinear Monotone Operators; Springer: New York, NY, USA, 1989. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Samadi, A.; Ntouyas, S.K.; Tariboon, J. On a Nonlocal Coupled System of Hilfer Generalized Proportional Fractional Differential Equations. Symmetry 2022, 14, 738. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14040738

AMA Style

Samadi A, Ntouyas SK, Tariboon J. On a Nonlocal Coupled System of Hilfer Generalized Proportional Fractional Differential Equations. Symmetry. 2022; 14(4):738. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14040738

Chicago/Turabian Style

Samadi, Ayub, Sotiris K. Ntouyas, and Jessada Tariboon. 2022. "On a Nonlocal Coupled System of Hilfer Generalized Proportional Fractional Differential Equations" Symmetry 14, no. 4: 738. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14040738

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop