Next Article in Journal
Towards Reliable Federated Learning Using Blockchain-Based Reverse Auctions and Reputation Incentives
Previous Article in Journal
Steady State Kinetics for Enzymes with Multiple Binding Sites Upstream of the Catalytic Site
Previous Article in Special Issue
Exact Solutions to Some Nonlinear Time-Fractional Evolution Equations Using the Generalized Kudryashov Method in Mathematical Physics
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Simpson-like Inequalities Involving the (s,m)-Preinvexity

1
Laboratory of Analysis and Control of Differential Equations “ACED”, Department of Mathematics, Facuty MISM, University of 8 May 1945 Guelma, P.O. Box 401, Guelma 24000, Algeria
2
Department of Mathematics, College of Science, University of Ha’il, P.O. Box 2240, Ha’il 55473, Saudi Arabia
3
Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
*
Author to whom correspondence should be addressed.
Submission received: 8 November 2023 / Revised: 5 December 2023 / Accepted: 5 December 2023 / Published: 8 December 2023
(This article belongs to the Special Issue Symmetry in Functional Equations and Inequalities: Volume 2)

Abstract

:
In this article, closed Newton–Cotes-type symmetrical inequalities involving four-point functions whose second derivatives are ( s , m ) -preinvex in the second sense are established. Some applications to quadrature formulas as well as inequalities involving special means are provided.

1. Introduction

One of the important concepts of real analysis and mathematical programming is convexity. Due to its various applications in various fields such as applied mathematics, engineering sciences and other fields, this notion has been extended and generalized in several directions and in various ways.
In [1], Meftah introduced the class of s , m -preinvex functions.
Definition 1
([1]). Function C : K 0 , b * R is said to be s , m -preinvex with respect to η, where η . , . : K × K R , b * > 0 and s , m 0 , 1 , if
C l + j η e , l 1 j s C l + m j s C e m
holds for all l , e K , and j [ 0 , 1 ] .
The previous class of function includes several classes depending on the values of s , m and η . , . . Among these classes, we have convex functions [2], m-convex functions [3], s-convex functions in the second sense [4], (s, m)-convex functions in the second sense [5], preinvex functions [6], m-preinvex functions [7] and s-preinvex functions in the second sense [8].
In numerical analysis, numerous quadrature rules have been established to approximate the integrals defined under the aforementioned convexity classes; see [9,10,11,12,13,14,15,16,17,18,19,20].
The following inequalities are well known in the literature as Simpson’s inequalities:
1 6 C l + 4 C l + e 2 + C e 1 e l l e C u d u 1 2880 C 4 e l 4 ,
and
1 8 C l + 3 C 2 l + e 3 + 3 C l + 2 e 3 + C e 1 e l l e C u d u 1 6480 C 4 e l 4 ,
where f is a four times continuously differentiable function on l , e , and C 4 = sup x l , e C 4 x .
As the above inequalities are very popular in estimating errors of quadrature rules, many researchers have massively studied them, as well as similar inequalities; one can consult, for example, [21,22,23,24,25,26,27,28,29,30] and references therein.
In [31], Hua et al. offered the following Simpson-type inequalities:
1 6 C l + 2 C 2 l + e 3 + 2 C l + 2 e 3 + C e 1 e l l e C u d u 6 1 q e l 2 324 s 3 3 2 + s + 7 + s 2 2 + s 3 s 1 + s 2 + s 3 + s C l q + 1 3 s 2 + s 3 + s C e q c e l 2 45 1 q + s 1 2 2 + s + 5 + s 3 s 1 + s 2 + s 3 + s C l q + C e q c 11 e l 2 270 1 q + 1 3 s 2 + s 3 + s C l q + s 3 3 2 + s + 7 + s 2 2 + s 3 s 1 + s 2 + s 3 + s C e q c e l 2 45 1 q
and
1 6 C l + 2 C 2 l + e 3 + 2 C l + 2 e 3 + C e 1 e l l e C u d u e l 2 54 1 3 s 1 + s 1 q B 2 q 1 q 1 , 2 q 1 q 1 1 1 q × 3 1 + s 2 1 + s C l q + C e q c 7 e l 2 3 s 1 + s 54 1 q + 2 1 + s 1 C l q + C e q c 13 e l 2 3 s 1 + s 54 1 q + C l q + 3 1 + s 2 1 + s C e q c 7 e l 2 3 s 1 + s 54 1 q .
In [32], Chiheb et al. established some Simpson-type inequalities for functions whose second derivatives are prequasi-invex, the results of which are based on the following identity:
Lemma 1
([32]). We let C : l , l + η e , l R be a function such that C is absolutely continuous and C is integrable on l , l + η e , l , then the following equality holds:
F e , l , C = η 2 e , l 54 1 0 j 1 j C l + 1 j 3 η e , l + C l + 2 j 3 η e , l + C l + 3 j 3 η e , l d j ,
where
F e , l , C = 1 6 C l + 2 C 3 l + η e , l 3 + 2 C 3 l + 2 η e , l 3 + C l + η e , l 1 η e , l l + η e , l l C u d u .
In this paper, using the identity declared in [32], we establish some Simpson-type inequalities for twice differentiable ( s , m ) -preinvex functions. Some special cases are derived. Applications to quadrature formulas and inequalities involving means are provided.

2. Main Results

The following special functions as well as the algebraic inequality are useful to our study.
Definition 2
([33]). The beta function is defined for R e l >0 and R e e >0 as follows:
B l , e = 1 0 j l 1 1 j e 1 d j .
Definition 3
([34]). The hypergeometric function is defined for R e c > R e e > 0 and z < 1 as follows:
2 F 1 l , e , c ; z = 1 B e , c e 1 0 j e 1 1 j c e 1 1 z j l d j .
Lemma 2
([35] Discrete Power mean inequality). For any l , e > 0 and 0 ζ 1 , we have
l ζ + e ζ 2 1 ζ l + e ζ .
Theorem 1.
We let C : l , l + η e , l 0 , R be a twice differentiable function such that C L l , l + η e , l . If C is s , m -preinvex for some fixed s , m 0 , 1 , we have
F e , l , C η 2 e , l 54 2 + 2 s + 3 + 3 s + 2 s + 6 + 3 × 2 s + 3 3 s + 3 3 s s + 1 s + 2 s + 3 C l + m C e m ,
where F e , l , C is defined as in (2).
Proof. 
From Lemma 1, properties of modulus and s , m -preinvexity of C on l , l + η e , l , we have
F e , l , C η 2 e , l 54 1 0 j 1 j f l + 1 j 3 η e , l d j + 1 0 j 1 j f l + 2 j 3 η e , l d j + 1 0 j 1 j f l + 3 j 3 η e , l d j η 2 e , l 54 1 0 j 1 j 2 + j 3 s f l + m 1 j 3 s f e m d j + 1 0 j 1 j 1 + j 3 s f l + m 2 j 3 s f e m d j + 1 0 j 1 j j 3 s f l + m 3 j 3 s f e m d j = η 2 e , l 54 f l 1 0 j 1 j 2 + j 3 s d j + m f e m 1 0 j 1 j 1 j 3 s d j + f l 1 0 j 1 j 1 + j 3 s d j + m f e m 1 0 j 1 j 2 j 3 s d j + f l 1 0 j 1 j j 3 s d j + m f e m 1 0 j 1 j 3 j 3 s d j
= η 2 e , l 54 f l + m f e m × 1 0 j 1 j 2 + j 3 s d j + 1 0 j 1 j 1 + j 3 s d j + 1 0 j 1 j j 3 s d j = η 2 e , l 54 f l + m f e m × 2 s + 2 + 3 s + 2 s + 7 × 2 s + 2 3 s + 3 3 s s + 1 s + 2 s + 3 + 2 s + 2 + 1 s + 5 2 s + 2 3 s s + 1 s + 2 s + 3 + s + 1 3 s s + 1 s + 2 s + 3 = η 2 e , l 54 2 + 2 s + 3 + 3 s + 2 s + 6 + 3 × 2 s + 3 3 s + 3 3 s s + 1 s + 2 s + 3 f l + m f e m ,
where we used the facts that
1 0 j 1 j 2 + j 3 s d j = 1 0 j 1 j 3 j 3 s d j = 2 s + 2 + 3 s + 2 s + 7 × 2 s + 2 3 s + 3 3 s s + 1 s + 2 s + 3 ,
1 0 j 1 j 1 + j 3 s d j = 1 0 j 1 j 2 j 3 s d j = 2 s + 2 + 1 s + 5 2 s + 2 3 s s + 1 s + 2 s + 3
and
1 0 j 1 j j 3 s d j = 1 0 j 1 j 1 j 3 s d j = 1 3 s s + 2 s + 3 .
The proof is finished. □
Corollary 1.
Taking s = m = 1 and η e , l = e l , Theorem 1 becomes
1 6 C l + 2 C 2 l + e 3 + 2 C l + 2 e 3 + C e 1 e l l e C u d u e l 2 216 C l + C e .
Theorem 2.
Under the assumptions of Theorem 1, if C q where q > 1 , is s , m -preinvex in the second sense for some fixed s , m 0 , 1 , with 1 p + 1 q = 1 , we have
F l , e , C η 2 e , l 54 B p + 1 , p + 1 1 p 3 s + 1 2 s + 1 C l q + m C e m q 3 s 1 + s 1 q + 2 s + 1 1 C l q + m C e m q 3 s 1 + s 1 q + C l q + m 3 s + 1 2 s + 1 C e m q 3 s 1 + s 1 q ,
where F l , e , C is defined as in (1.2).
Proof. 
From Lemma 1, properties of modulus, Hölder’s inequality and s , m -preinvexity of C q on l , l + η e , l , we have
F l , e , C η 2 e , l 54 1 0 j 1 j C l + 1 j 3 η e , l d j + 1 0 j 1 j C l + 2 j 3 η e , l d j + 1 0 t 1 t C l + 3 j 3 η e , l d j η 2 e , l 54 1 0 j p 1 j p d j 1 p 1 0 2 + j 3 s C l q + m 1 j 3 s C e m q d j 1 q + 0 1 1 + j 3 s C l q + m 2 j 3 s C e m q d j 1 q + 0 1 j 3 s C l q + m 3 j 3 s C e m q d j 1 q = η 2 e , l 54 × 3 s q 1 0 j p 1 j p d j 1 p × C l q 1 0 2 + j s d j + m C e m q 1 0 1 j s d j 1 q + C l q 1 0 1 + j s d j + m C e m q 1 0 2 j s d j 1 q + C l q 1 0 j s d j + m C e m q 1 0 3 j s d j 1 q = η 2 e , l 54 B p + 1 , p + 1 1 p 3 s + 1 2 s + 1 C l q + m C e m q 3 s 1 + s 1 q + 2 s + 1 1 C l q + m C e m q 3 s 1 + s 1 q + C l q + m 3 s + 1 2 s + 1 C e m q 3 s 1 + s 1 q ,
which completes the proof. □
Corollary 2.
Taking s = m = 1 and η e , l = e l , Theorem 2 becomes
1 6 C l + 2 C 2 l + e 3 + 2 C l + 2 e 3 + C e 1 e l l e C u d u e l 2 54 B p + 1 , p + 1 1 p 5 C l q + C e q 6 1 q + C l q + C e q 2 1 q + C l q + 5 C e q 6 1 q .
Corollary 3.
In Corollary 2, using the discrete power mean inequality, we obtain
1 6 C l + 2 C 2 l + e 3 + 2 C l + 2 e 3 + C e 1 e l l e C u d u e l 2 18 B p + 1 , p + 1 1 p C l q + C e q 2 1 q .
Theorem 3.
Under the assumptions of Theorem 2, if C q is s , m -preinvex in the second sense for some fixed s , m 0 , 1 and q 1 , we have
F l , e , C η 2 e , l 54 × 6 1 1 q 2 s + 2 + 3 s + 2 s + 7 × 2 s + 2 3 s + 3 3 s s + 1 s + 2 s + 3 C l q + m 3 s s + 2 s + 3 C e m q 1 q + 2 s + 2 + 1 s + 5 2 s + 2 3 s s + 1 s + 2 s + 3 1 q C l q + m C e m q 1 q + 1 3 s s + 2 s + 3 C l q + m 2 s + 2 + 3 s + 2 s + 7 × 2 s + 2 3 s + 3 3 s s + 1 s + 2 s + 3 C e m q 1 q ,
where F l , e , C is defined as in (1.2).
Proof. 
From Lemma 1, properties of modulus, power mean inequality and s , m -preinvexity of f q on l , l + η e , l , we obtain
F l , e , C η 2 e , l 54 1 0 j 1 j C l + 1 j 3 η e , l d j + 1 0 j 1 j C l + 2 j 3 η e , l d j + 1 0 j 1 j C l + 3 j 3 η e , l d j η 2 e , l 54 1 0 j 1 j d t 1 1 q 1 0 j 1 j C l + 1 j 3 η e , l q d j 1 q + 1 0 j 1 j C l + 2 j 3 η e , l q d j 1 q + 1 0 j 1 j C l + 3 j 3 η e , l q d j 1 q η 2 e , l 54 1 6 1 1 q 1 0 j 1 j 2 + j 3 s C l q + m 1 j 3 s C e m q d j 1 q + 1 0 j 1 j 1 + j 3 s C l q + m 2 j 3 s C e m q d j 1 q + 1 0 j 1 j j 3 s C l q + m 1 j 3 s C e m q d j 1 q
= η 2 e , l 54 × 6 1 1 q C l q 1 0 j 1 j 2 + j 3 s d j + m C e m q 1 0 j 1 j 1 j 3 s d j 1 q + C l q 1 0 j 1 j 1 + j 3 s d j + m C e m q 1 0 j 1 j 2 j 3 s d j 1 q + C l q 1 0 j 1 j j 3 s d j + m C e m q 1 0 j 1 j 1 j 3 s d j 1 q = η 2 e , l 54 × 6 1 1 q 2 s + 2 + 3 s + 2 s + 7 × 2 s + 2 3 s + 3 3 s s + 1 s + 2 s + 3 C l q + m 3 s s + 2 s + 3 C e m q 1 q + 2 s + 2 + 1 s + 5 2 s + 2 3 s s + 1 s + 2 s + 3 1 q C l q + m C e m q 1 q + 1 3 s s + 2 s + 3 C l q + m 2 s + 2 + 3 s + 2 s + 7 × 2 s + 2 3 s + 3 3 s s + 1 s + 2 s + 3 C e m q 1 q ,
where we used (2.1)–(2.3). The proof is completed. □
Corollary 4.
Taking s = m = 1 and η e , l = e l , Theorem 3 becomes
1 6 C l + 2 C 2 l + e 3 + 2 C l + 2 e 3 + C e 1 e l l e C u d u e l 2 324 5 C l q + C e q 6 1 q + C l q + C e q 2 1 q + C l q + 5 C e q 6 1 q .
Corollary 5.
In Corollary 4, using the discrete power mean inequality, we obtain
1 6 C l + 2 C 2 l + e 3 + 2 C l + 2 e 3 + C e 1 e l l e C u d u e l 2 108 C l q + C e q 2 1 q .
Theorem 4.
Under the assumptions of Theorem 2, we have the following inequality:
F l , e , C η 2 e , l 54 1 p + 1 1 p 2 F 1 s , 1 , q + 2 ; 1 3 q + 1 C l q + m B q + 1 , s + 1 3 s C e m q 1 q + 2 s × 2 F 1 s , 1 , q + 2 ; 1 2 3 s q + 1 C l q + m 2 s × 2 F 1 s , q + 1 , q + 2 ; 1 2 3 s q + 1 C e m q 1 q + 1 3 s q + s + 1 C l q + m 2 F 1 s , q + 1 , q + 2 ; 1 3 q + 1 C e m q 1 q ,
where F l , e , C is defined as in (1.2) and B and 2 F 1 are beta and hypergeometric functions, respectively.
Proof. 
From Lemma 1, properties of modulus, Hölder’s inequality and s , m -preinvexity of f q on a , a + η b , a , we have
F l , e , C η 2 e , l 54 1 0 1 j p d t 1 p 1 0 j q C l + 1 j 3 η e , l q d j 1 q + 1 0 j q C l + 2 j 3 η e , l q d j 1 q + 1 0 j q C l + 3 j 3 η e , l q d j 1 q η 2 e , l 54 1 p + 1 1 p C l q 1 0 j q 2 + j 3 s d j + m C e m q 1 0 j q 1 j 3 s d j 1 q + C l q 1 0 j q 1 + j 3 s d j + m C e m q 1 0 j q 2 j 3 s d j 1 q + C l q 1 0 j q j 3 s d j + m C e m q 1 0 j q 3 j 3 s d j 1 q = η 2 e , l 54 1 p + 1 1 p 2 F 1 s , 1 , q + 2 ; 1 3 q + 1 C l q + m B q + 1 , s + 1 3 s C e m q 1 q + 2 s × 2 F 1 s , 1 , q + 2 ; 1 2 3 s q + 1 C l q + m 2 s × 2 F 1 s , q + 1 , q + 2 ; 1 2 3 s q + 1 C e m q 1 q + 1 3 s q + s + 1 C l q + m 2 F 1 s , q + 1 , q + 2 ; 1 3 q + 1 C e m q 1 q ,
where we used
1 0 j q 2 + j 3 s d j = 1 q + 1 . 2 F 1 s , 1 , q + 2 ; 1 3 , 1 0 j q 1 j 3 s d j = 1 3 s B q + 1 , s + 1 , 1 0 j q 1 + j 3 s d j = 2 3 s 1 q + 1 . 2 F 1 s , 1 , q + 2 ; 1 2 , 1 0 j q 2 t 3 s d j = 2 3 s 1 q + 1 . 2 F 1 s , q + 1 , q + 2 ; 1 2 , 1 0 j q j 3 s d j = 1 3 s 1 q + s + 1 , 1 0 j q 3 j 3 s d j = 1 q + 1 . 2 F 1 s , q + 1 , q + 2 ; 1 3 .
The proof is completed. □
Corollary 6.
In Theorem 4, taking s = m = 1 and η e , l = e l , we obtain
1 6 C l + 2 C 2 l + e 3 + 2 C l + 2 e 3 + C e 1 e l l e C u d u e l 2 162 3 p + 1 1 p 3 q + 5 C l q + C e q q + 1 q + 2 1 q + 2 q + 3 C l q + q + 3 C e q q + 1 q + 2 1 q + q + 1 C l q + 2 q + 5 C e q q + 1 q + 2 1 q .

3. Applications

We let Υ be the partition of points l = x 0 < x 1 < < x n = a of interval l , e and consider quadrature formula
l e C u d u = λ C , Υ + R C , Υ ,
where
λ C , Υ = n 1 i = 0 x i + 1 x i 6 C x i + 2 C 2 x i + x i + 1 3 + 2 C x i + 2 x i + 1 3 + C x i + 1
and R C , Υ is the error of approximation.
Proposition 1.
We let C be as in Theorem 1 and n N . If C q is an s-convex function in the second sense for some fixed s 0 , 1 , we have
R C , Υ n 1 i = 0 x i + 1 x i 3 54 2 + 2 s + 3 + 3 s + 2 s + 6 + 3 × 2 s + 3 3 s + 3 3 s s + 1 s + 2 s + 3 C x i + C x i + 1 .
Proof. 
Applying Theorem 1 with η e , l = e l and m = 1 on x i , x i + 1 i = 0 , 1 , , n 1 of partition Υ , we obtain
1 6 C x i + 2 C 2 x i + x i + 1 3 + 2 C x i + 2 x i + 1 3 + C x i + 1 1 x i + 1 x i x i x i + 1 C u d u n 1 i = 0 x i + 1 x i 2 54 2 + 2 s + 3 + 3 s + 2 s + 6 + 3 × 2 s + 3 3 s + 3 3 s s + 1 s + 2 s + 3 C x i + C x i + 1 .
We add the above inequalities for all i = 0 , 1 , , n 1 , and then multiply the resulting inequality by x i + 1 x i . The desired result follows from the triangular inequality. □
Proposition 2.
We let C be as in Theorem 1 and n N . If C q is convex function where p , q > 1 with 1 p + 1 q = 1 , we have
R C , Υ n 1 i = 0 x i + 1 x i 3 18 B p + 1 , p + 1 1 p C x i q + C x i + 1 q 2 .
Proof. 
Applying Corollary 3 on x i , x i + 1 i = 0 , 1 , , n 1 of partition Υ , we obtain
1 6 C x i + 2 C 2 x i + x i + 1 3 + 2 C x i + 2 x i + 1 3 + C x i + 1 1 x i + 1 x i x i x i + 1 C u d u n 1 i = 0 x i + 1 x i 2 18 B p + 1 , p + 1 1 p C x i q + C x i + 1 q 2 .
We add above inequalities for all i = 0 , 1 , , n 1 , and then multiply the resulting inequality by x i + 1 x i . The desired result follows from the triangular inequality. □
Proposition 3.
We let C be as in Theorem 1 and n N . If C q is convex function where p , q > 1 with 1 p + 1 q = 1 , we have
R C , Υ n 1 i = 0 x i + 1 x i 3 162 3 p + 1 1 p 3 q + 5 C x i q + C x i + 1 q q + 1 q + 2 1 q + 2 q + 3 C x i q + q + 3 C x i + 1 q q + 1 q + 2 1 q + q + 1 C x i q + 2 q + 5 C x i + 1 q q + 1 q + 2 1 q .
Proof. 
Applying Corollary 6 on x i , x i + 1 i = 0 , 1 , , n 1 of partition Υ , we obtain
1 6 C x i + 2 C 2 x i + x i + 1 3 + 2 C x i + 2 x i + 1 3 + C x i + 1 1 x i + 1 x i x i x i + 1 C u d u n 1 i = 0 x i + 1 x i 2 162 3 p + 1 1 p 3 q + 5 C x i q + C x i + 1 q q + 1 q + 2 1 q + 2 q + 3 C x i q + q + 3 C x i + 1 q q + 1 q + 2 1 q + q + 1 C x i q + 2 q + 5 C x i + 1 q q + 1 q + 2 1 q .
We add above inequalities for all i = 0 , 1 , , n 1 , and then multiply the resulting inequality by x i + 1 x i . The desired result follows from the triangular inequality. □
For arbitrary real numbers l , e , t , we have:
The arithmetic mean: A l , e = l + e 2 and A l , e , t = l + e + t 3 .
The p-logarithmic mean: L p l , e = e p + 1 l p + 1 p + 1 e l 1 p , l , e > 0 , l e and p R 1 , 0 .
Proposition 4.
We let l , e R with 0 < l < e , then we have
A l 3 , e 3 + A 3 l , l , e + A 3 l , e , e 3 L 3 3 l , e e l 2 6 l q + e q 2 1 q .
Proof. 
The assertion follows from Corollary 5, with q 2 , applied to function f x = x 3 . □

Author Contributions

Conceptualization, T.C., B.M. and A.M.; Methodology, T.C., B.M. and A.M.; Formal analysis, T.C., B.M. and A.M.; Writing—original draft, T.C., B.M., A.M. and M.B.; Writing—review and editing, T.C., B.M., A.M., M.B.M. and M.B.; Project administration, A.M. and M.B.M.; Funding acquisition, M.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research has been funded by Scientific Research Deanship at University of Ha’il—Saudi Arabia through project number RG-23 036.

Data Availability Statement

Not applicable.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at Ha’il University for funding this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meftah, B. Hermite-Hadamard’s inequalities for functions whose first derivatives are (s,m)-preinvex in the second sense. J. New Theory 2016, 10, 54–65. [Google Scholar]
  2. Pećarixcx, J.E.; Proschan, F.; Tong, Y.L. Convex functions, partial orderings, and statistical applications. In Mathematics in Science and Engineering; Academic Press, Inc.: Boston, MA, USA, 1992; Volume 187. [Google Scholar]
  3. Toader, G. Some generalizations of the convexity. In Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, Romania, 25–27 October 1984; pp. 329–338. [Google Scholar]
  4. Breckner, W.W. Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. Publ. Inst. Math. 1978, 23, 13–20. [Google Scholar]
  5. Eftekhari, N. Some remarks on (s,m)-convexity in the second sense. J. Math. Inequal. 2014, 8, 489–495. [Google Scholar] [CrossRef]
  6. Weir, T.; Mond, B. Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef]
  7. Latif, M.A.; Shoaib, M. Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (α,m)-preinvex functions. J. Egypt. Math. Soc. 2015, 23, 236–241. [Google Scholar] [CrossRef]
  8. Li, J.-Y. On Hadamard-type inequalities for s-preinvex functions. J. Chongqing Norm. Univ. (Nat. Sci.) 2010, 27, 3. [Google Scholar]
  9. Du, T.; Liao, J.; Chen, L.; Awan, M.U. Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized α,m-preinvex functions. J. Inequal. Appl. 2016, 2016, 306. [Google Scholar] [CrossRef]
  10. Kashuri, A.; Meftah, B.; Mohammed, P.O.; Lupaş, A.A.; Abdalla, B.; Hamed, Y.S.; Abdeljawad, T. Fractional weighted Ostrowski-type inequalities and their applications. Symmetry 2021, 13, 968. [Google Scholar] [CrossRef]
  11. Kashuri, A.; Sarikaya, M.Z. Parameterized inequalities of different types for preinvex functions with respect to another function via generalized fractional integral operators and their applications. Ukr. Math. J. 2021, 73, 1371–1397, Reprint of Ukraïn. Mat. Zh. 2021, 73, 1181–1204. [Google Scholar] [CrossRef]
  12. Li, Y.; Du, T.; Yu, B. Some new integral inequalities of Hadamard-Simpson type for extended (s,m)-preinvex functions. Ital. J. Pure Appl. Math. 2016, 36, 583–600. [Google Scholar]
  13. Meftah, B. Fractional Hermite-Hadamard type integral inequalities for functions whose modulus of derivatives are co-ordinated log-preinvex. Punjab Univ. J. Math. 2019, 51, 21–37. [Google Scholar]
  14. Noor, M.A.; Noor, K.I.; Mohsen, B.B.; Rassias, M.T.; Raigorodskii, A. General preinvex functions and variational-like inequalities, In Approximation and Computation in Science and Engineering; Springer Optimization and Its Applications; Springer: Berlin/Heidelberg, Germany, 2022; Volume 180, pp. 643–666. [Google Scholar]
  15. Pavić, Z.; Avcı, M.A. The most important inequalities of m-convex functions. Turk. J. Math. 2017, 41, 625–635. [Google Scholar] [CrossRef]
  16. Rashid, S.; Latif, M.A.; Hammouch, Z.; Chu, Y.M. Fractional integral inequalities for strongly h-preinvex functions for ak th order differentiable functions. Symmetry 2019, 11, 1448. [Google Scholar] [CrossRef]
  17. Safdar, F.; Attique, M. Extended weighted Simpson-like type inequalities for preinvex functions and their use in physical system. Punjab Univ. J. Math. 2022, 54, 621–643. [Google Scholar] [CrossRef]
  18. Sarikaya, M.Z.; Set, E.; Ozdemir, M.E. On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 2010, 60, 2191–2199. [Google Scholar] [CrossRef]
  19. Sarikaya, M.Z.; Budak, H.; Erden, S. On new inequalities of Simpson’s type for generalized convex functions. Korean J. Math. 2019, 27, 279–295. [Google Scholar]
  20. Wang, Y.; Wang, S.-H.; Qi, F. Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is s-preinvex. Facta Univ. Ser. Math. Inform. 2013, 28, 151–159. [Google Scholar]
  21. Abdeljawad, T.; Rashid, S.; Hammouch, Z.; İşcan, İ.; Chu, Y.-M. Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications. Adv. Differ. Equ. 2020, 496, 26. [Google Scholar] [CrossRef]
  22. Ali, M.A.; Kara, H.; Tariboon, J.; Asawasamrit, S.; Budak, H.; Hezenci, F. Some new Simpson’s-formula-type inequalities for twice-differentiable convex functions via generalized fractional operators. Symmetry 2021, 13, 2249. [Google Scholar] [CrossRef]
  23. Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12, 9. [Google Scholar]
  24. Awan, M.U.; Noor, M.A.; Mihai, M.V.; Noor, K.I.; Khan, A.G. Some new bounds for Simpson’s rule involving special functions via harmonic h-convexity. J. Nonlinear Sci. Appl. 2017, 10, 1755–1766. [Google Scholar] [CrossRef]
  25. Du, T.; Liao, J.-G.; Li, Y.-J. Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions. J. Nonlinear Sci. Appl. 2016, 9, 3112–3126. [Google Scholar] [CrossRef]
  26. Farid, G.; Tariq, B. Some integral inequalities for m-convex functions via fractional integrals. J. Inequal. Spec. Funct. 2017, 8, 170–185. [Google Scholar]
  27. Hamida, S.; Meftah, B. Some Simpson type inequalities for differentiable h-preinvex functions. Indian J. Math. 2020, 62, 299–319. [Google Scholar]
  28. Hezenci, F.; Budak, H.; Kara, H. New version of fractional Simpson type inequalities for twice differentiable functions. Adv. Differ. Equ. 2021, 460, 10. [Google Scholar] [CrossRef]
  29. Qaisar, S.H.a.S. Generalizations of Simpson’s type inequalities through preinvexity and prequasiinvexity. Punjab Univ. J. Math. 2014, 46, 1–9. [Google Scholar]
  30. Rashid, S.; Akdemir, A.O.; Jarad, F.; Noor, M.A.; Noor, K.I. Simpson’s type integral inequalities for k-fractional integrals and their applications. AIMS Math. 2019, 4, 1087–1100. [Google Scholar] [CrossRef]
  31. Hua, J.; Xi, B.-Y.; Qi, F. Some new inequalities of Simpson type for strongly s-convex functions. Afr. Mat. 2015, 26, 741–752. [Google Scholar] [CrossRef]
  32. Chiheb, T.; Boumaza, N.; Meftah, B. Some new Simpson-like type inequalities via preqausiinvexity. Transylv. J. Math. Mech. 2020, 12, 1–10. [Google Scholar]
  33. Rainville, E.D. ; Special Functions, Reprint of 1960, 1st ed.; Chelsea Publishing Co.: Bronx, NY, USA, 1971. [Google Scholar]
  34. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier, Inc.: Amsterdam, The Netherlands, 2012. [Google Scholar]
  35. Bullen, P.S. Handbook of Means and their Inequalities.; In Mathematics and its Applications, 560; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Chiheb, T.; Meftah, B.; Moumen, A.; Mesmouli, M.B.; Bouye, M. Some Simpson-like Inequalities Involving the (s,m)-Preinvexity. Symmetry 2023, 15, 2178. https://0-doi-org.brum.beds.ac.uk/10.3390/sym15122178

AMA Style

Chiheb T, Meftah B, Moumen A, Mesmouli MB, Bouye M. Some Simpson-like Inequalities Involving the (s,m)-Preinvexity. Symmetry. 2023; 15(12):2178. https://0-doi-org.brum.beds.ac.uk/10.3390/sym15122178

Chicago/Turabian Style

Chiheb, Tarek, Badreddine Meftah, Abdelkader Moumen, Mouataz Billah Mesmouli, and Mohamed Bouye. 2023. "Some Simpson-like Inequalities Involving the (s,m)-Preinvexity" Symmetry 15, no. 12: 2178. https://0-doi-org.brum.beds.ac.uk/10.3390/sym15122178

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop