Next Article in Journal
Mathematical Modeling of Dielectric Permeability and Volt-Ampere Characteristics of a Semiconductor Nanocomposite Conglomerate
Next Article in Special Issue
Subclasses of Multivalent Meromorphic Functions with a Pole of Order p at the Origin
Previous Article in Journal
Effect of Global and Local Refutation Mechanism on Rumor Propagation in Heterogeneous Network
Previous Article in Special Issue
Certain Properties of a Class of Functions Defined by Means of a Generalized Differential Operator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Applications of (M,N)-Lucas Polynomials on a Certain Family of Bi-Univalent Functions

by
Abbas Kareem Wanas
1 and
Luminiţa-Ioana Cotîrlă
2,*
1
Department of Mathematics, College of Science, University of Al-Qadisiyah, Al-Qadisiyah 58001, Iraq
2
Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
*
Author to whom correspondence should be addressed.
Submission received: 12 January 2022 / Revised: 8 February 2022 / Accepted: 10 February 2022 / Published: 14 February 2022
(This article belongs to the Special Issue New Trends in Complex Analysis Researches)

Abstract

:
In the current article, making use of certain operator, we initiate and explore a certain family W Σ ( λ , γ , σ , δ , α , β , p , q ; h ) of holomorphic and bi-univalent functions in the open unit disk D . We establish upper bounds for the initial Taylor–Maclaurin coefficients and the Fekete–Szegö type inequality for functions in this family.

1. Introduction

We indicate by A the family of holomorphic functions in the open unit disk D = { z C : | z | < 1 } , of the form
f ( z ) = z + n = 2 a n z n
By S we denote the subfamily of A consisting of all functions which are also univalent in D .
The famous Koebe one-quarter theorem [1] ensures that the image of D under each univalent function f A contains a disk of radius 1 4 . Each function f S has an inverse f 1 and the inverse is defined by f 1 ( f ( z ) ) = z and
f ( f 1 ( w ) ) = w , | w | < r 0 ( f ) , r 0 ( f ) 1 4
where
f 1 ( w ) = w a 2 w 2 + ( 2 a 2 2 a 3 ) w 3 ( 5 a 2 3 5 a 2 a 3 + a 4 ) w 4 + .
We state that a function f A is bi-univalent in the open unit disk D if the functions f and f 1 are univalent in D . The family of all bi-univalent functions in D is denoted by Σ .
There have been many papers in recent years on analytic and bi-univalent functions, e.g., [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16].
From the paper in [10], we mention some examples of functions in the family Σ :
z 1 z , log ( 1 z ) and 1 2 log 1 + z 1 z .
We know that some familiar functions f S , such as the Koebe function k ( z ) = z ( 1 z ) 2 , its rotation function k ζ ( z ) = z ( 1 e i ζ z ) 2 , f ( z ) = z z 2 2 and f ( z ) = z 1 z 2 , are not members of Σ .
The problem lies in obtaining the general coefficient bounds on the Taylor–Maclaurin coefficients
| a n | ( n N ; n > = 3 )
for function f Σ is still not completely addressed for many of the subfamilies of Σ . The Fekete–Szegö problem a 3 η a 2 2 for f S is well known for its rich history in the field of Geometric Function Theory. Its origin is in the disproof by Fekete and Szegö in [1] of the Littlewood–Paley conjecture that the coefficients of odd univalent functions are bounded by unity. The Fekete–Szegö problem has been studied in recent years for many classes of univalent functions, see, for example: [2,3,4,5,6,8,9,10,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34].
In [35], the principle of subordination between holomorphic functions is presented: if the functions f and g are holomorphic in D , we state that the function f is subordinate to g, if there exists a Schwarz function ω , which is analytic in D with
ω ( 0 ) = 0 and | ω ( z ) | < 1 ( z D ) ,
such that
f ( z ) = g ω ( z ) .
This subordination is denoted by
f g or f ( z ) g ( z ) ( z D ) .
It is well known that if the function g is univalent in D , then
f g ( z D ) f ( 0 ) = g ( 0 ) and f ( D ) g ( D ) .
For obtaining the original results in this paper, some elements of the ( p , q ) -calculus must be used. For more details on the concepts of ( p , q ) -calculus, see the following papers: [23,31,36,37,38,39].
For a holomorphic function f, the ( p , q ) -derivative operator is defined by
D p , q f ( z ) = f ( p z ) f ( q z ) ( p q ) z ( z D * = D \ 0 ) , 0 < q < p < = 1 ,
and
D p , q f ( 0 ) = f ( 0 ) .
For function f A , we deduce that
D p , q f ( z ) = 1 + n = 2 [ n ] p , q a n z n 1 ,
where
[ n ] p , q = p n q n p q = p n 1 + p n 2 q + p n 3 q 2 + + p q n 2 + q n 1 ( p q ) ,
(see [40,41])
lim p 1 [ n ] p , q = [ n ] q = 1 q n 1 q .
We see that the notation [ n ] p , q is symmetric,
[ n ] p , q = [ n ] q , p .
Wanas and Cotîrlă [42] introduced the operator W α , β , p , q σ , δ : A A defined by
W α , β , p , q σ , δ f ( z ) = z + n = 2 [ Ψ n ( σ , α , β ) ] p , q [ Ψ 1 ( σ , α , β ) ] p , q δ a n z n ,
where
Ψ n ( σ , α , β ) = τ = 1 σ σ τ ( 1 ) τ + 1 α τ + n β τ , Ψ 1 ( σ , α , β ) = τ = 1 σ σ τ ( 1 ) τ + 1 α τ + β τ ,
n 1 , σ N , α R , β R 0 + with α + β > 0 , δ N 0 , 0 < q < p < = 1 z D .
Remark 1. 
The operator W α , β , p , q σ , δ is a generalization of several known operators studied in earlier investigations, which are recalled below.
1. 
The operator W α , β , p , q σ , δ reduces to J q , α ν , theq-Srivastava-Attiya operator, see [43], when α C \ Z 0 , p = β = σ = 1 , ( ν ) > 1 , δ = ν .
2. 
The operator W α , β , p , q σ , δ becomes theq-Bernardi operator, see [44], when δ = 1 , α > 1 , p = σ = β = 1 .
3. 
The operator W α , β , p , q σ , δ becomes theq-Libera operator, see [44], when δ = 1 , p = α = σ = β = 1 .
4. 
The operator W α , β , p , q σ , δ becomes theq-Sălăgean operator, see [45], when p = β = σ = 1 , α = 0 .
5. 
The operator W α , β , p , q σ , δ reduces to the operator I α , β δ , introduced and studied by Wanas in [46], when p = 1 , q 1 .
6. 
The operator W α , β , p , q σ , δ becomes the operator I α , β δ studied by Swamy in the paper [47], when σ = p = 1 , q 1 .
7. 
The operator W α , β , p , q σ , δ reduces to the Srivastava–Attiya operator J α ν which was studied in [48], when ( ν ) > 1 , δ = ν , q 1 , p = β = σ = 1 , and α C \ Z 0 .
8. 
The operator W α , β , p , q σ , δ , becomes the operator I α δ , which was studied by Cho and Srivastava in [49], when α > 1 , q 1 , p = β = σ = 1 .
9. 
The operator W α , β , p , q σ , δ becomes the operator I δ , which was studied by Uralegaddi and Somanatha in [50], when σ = p = α = β = 1 , q 1 .
10. 
The operator W α , β , p , q σ , δ becomes the operator I ξ introduced by Jung et al. in [51], when ξ > 0 , δ = ξ , σ = α = β = p = 1 , q 1 . The operator I ξ is the Jung-Kim–Srivastava integral operator.
11. 
The operator W α , β , p , q σ , δ reduces to the Bernardi operator in [52] when σ = β = 1 = p , q 1 , α > 1 , δ = 1 .
12. 
The operator W α , β , p , q σ , δ reduces to the Alexander operator in [53] when p = β = σ = 1 , q 1 , α = 0 , δ = 1 .
13. 
The operator W α , β , p , q σ , δ becomes the operator D β δ , which was studied by Al-Oboudi in the paper [54], when σ = 1 = p , q 1 , α = β 1 and β > = 0 .
14. 
The operator W α , β , p , q σ , δ becomes the operator S δ , which was studied by Sălăgean in the paper [55], when σ = 1 = p , q 1 , α = 0 , β = 1 .
In [56], the ( M , N ) -Lucas Polynomials, L M , N , k ( x ) , for the polynomials with real coefficients M ( x ) and N ( x ) are defined by the recurrence relation:
L M , N , k ( x ) = M ( x ) L M , N , k 1 ( x ) + N ( x ) L M , N , k 2 ( x ) , ( k > = 2 ) ,
and
L M , N , 0 ( x ) = 2 , L M , N , 1 ( x ) = M ( x ) and L M , N , 2 ( x ) = M 2 ( x ) + 2 N ( x ) .
The Lucas Polynomials play an important role in a range of disciplines in mathematics, statistics, engineering sciences and physics (see, for example [57,58,59]). The generating function of the ( M , N ) -Lucas Polynomial L M , N , k ( x ) (see [58]) is given by
T M ( x ) , N ( x ) ( z ) = k = 2 L M , N , k ( x ) z k = 2 M ( x ) z 1 M ( x ) z N ( x ) z 2 .
Remark 2. 
If we choose particular values for M ( x ) and N ( x ) , then the (M,N)-Lucas Polynomial L M , N , k ( x ) leads to the following polynomials:
1. 
L x , 1 , k ( x ) = : L k ( x ) , the Lucas polynomials;
2. 
L 2 x , 1 , k ( x ) = : P k ( x ) , the Pell–Lucas polynomials;
3. 
L 1 , 2 x , k ( x ) = : J k ( x ) , the Jacobsthal polynomials;
4. 
L 3 x , 2 , k ( x ) = : F k ( x ) , the Fermat–Lucas polynomials;
5. 
L 2 x , 1 , k ( x ) = : T k ( x ) , the first-kind Chebyshev polynomials.
The ( M , N ) -Lucas Polynomial has been presented and investigated analogously by various classes of functions (see, for example [32,60,61,62,63,64,65]).

2. Main Results

We define the family W Σ ( λ , γ , σ , δ , α , β , p , q ; h ) in this section as follows:
Definition 1.
Assume that γ > = 0 , 0 < = λ < = 1 andhis analytic in D , h ( 0 ) = 1 . The family W Σ ( λ , γ , σ , δ , α , β , p , q ; h ) contains all the functions f Σ that satisfy the subordinations
( 1 γ ) ( 1 λ ) z W α , β , p , q σ , δ f ( z ) W α , β , p , q σ , δ f ( z ) + λ 1 + z W α , β , p , q σ , δ f ( z ) W α , β , p , q σ , δ f ( z ) + γ λ z 2 W α , β , p , q σ , δ f ( z ) + z W α , β , p , q σ , δ f ( z ) λ z W α , β , p , q σ , δ f ( z ) + ( 1 λ ) W α , β , p , q σ , δ f ( z ) h ( z )
and
( 1 γ ) ( 1 λ ) w W α , β , p , q σ , δ f 1 ( w ) W α , β , p , q σ , δ f 1 ( w ) + λ 1 + w W α , β , p , q σ , δ f 1 ( w ) W α , β , p , q σ , δ f 1 ( w ) + γ λ w 2 W α , β , p , q σ , δ f 1 ( w ) + w W α , β , p , q σ , δ f 1 ( w ) λ w W α , β , p , q σ , δ f 1 ( w ) + ( 1 λ ) W α , β , p , q σ , δ f 1 ( w ) h ( w ) ,
where the function f 1 is of the form (2).
Theorem 1.
Assume that 0 < = λ < = 1 and γ > = 0 . If the family W Σ ( λ , γ , σ , δ , α , β , p , q ; h ) , where h ( z ) = 1 + e 1 z + e 2 z 2 + , contains the functions f Σ given by Relation (1), then
a 2 < = | [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 | λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q δ
and
a 3 < = min max [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ , [ Ψ 1 ( σ , α , β ) ] p , q δ e 2 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ + λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 2 2 ( 2 λ + 1 ) λ + 1 2 [ Ψ 3 ( σ , α , β ) ] p , q δ , max [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ , [ Ψ 1 ( σ , α , β ) ] p , q δ e 2 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ 4 ( 2 λ + 1 ) [ Ψ 1 ( σ , α , β ) ] p , q 2 δ [ Ψ 3 ( σ , α , β ) ] p , q δ λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 2 ( σ , α , β ) ] p , q 2 δ e 1 2 2 ( 2 λ + 1 ) λ + 1 2 [ Ψ 3 ( σ , α , β ) ] p , q δ [ Ψ 2 ( σ , α , β ) ] p , q 2 δ .
Proof. 
Suppose that f W Σ ( λ , γ , σ , δ , α , β , p , q ; e 1 ; e 2 ) . It follows that there exist ε , ζ : D D holomorphic functions, of the form
ε ( z ) = d 1 z + d 2 z 2 + d 3 z 3 + ( z D )
and
ζ ( w ) = l 1 w + l 2 w 2 + l 3 w 3 + ( w D ) ,
with ε ( 0 ) = ζ ( 0 ) = 0 , ε ( z )   <   1 , ζ ( w )   <   1 , z , w D such that
( 1 γ ) ( 1 λ ) z W α , β , p , q σ , δ f ( z ) W α , β , p , q σ , δ f ( z ) + λ 1 + z W α , β , p , q σ , δ f ( z ) W α , β , p , q σ , δ f ( z ) +   γ λ z 2 W α , β , p , q σ , δ f ( z ) + z W α , β , p , q σ , δ f ( z ) λ z W α , β , p , q σ , δ f ( z ) + ( 1 λ ) W α , β , p , q σ , δ f ( z ) = 1 + e 1 ε ( z ) + e 2 ε 2 ( z ) +
and
( 1 γ ) ( 1 λ ) w W α , β , p , q σ , δ f 1 ( w ) W α , β , p , q σ , δ f 1 ( w ) + λ 1 + w W α , β , p , q σ , δ f 1 ( w ) W α , β , p , q σ , δ f 1 ( w ) + γ λ w 2 W α , β , p , q σ , δ f 1 ( w ) + w W α , β , p , q σ , δ f 1 ( w ) λ w W α , β , p , q σ , δ f 1 ( w ) + ( 1 λ ) W α , β , p , q σ , δ f 1 ( w ) = 1 + e 1 ζ ( w ) + e 2 ζ 2 ( w ) + .
Combining (7)–(10) yields
( 1 γ ) ( 1 λ ) z W α , β , p , q σ , δ f ( z ) W α , β , p , q σ , δ f ( z ) + λ 1 + z W α , β , p , q σ , δ f ( z ) W α , β , p , q σ , δ f ( z ) + γ λ z 2 W α , β , p , q σ , δ f ( z ) + z W α , β , p , q σ , δ f ( z ) λ z W α , β , p , q σ , δ f ( z ) + ( 1 λ ) W α , β , p , q σ , δ f ( z ) = 1 + e 1 d 1 z + e 1 d 2 + e 2 ( x ) d 1 2 z 2 +
and
( 1 γ ) ( 1 λ ) w W α , β , p , q σ , δ f 1 ( w ) W α , β , p , q σ , δ f 1 ( w ) + λ 1 + w W α , β , p , q σ , δ f 1 ( w ) W α , β , p , q σ , δ f 1 ( w ) +   γ λ w 2 W α , β , p , q σ , δ f 1 ( w ) + w W α , β , p , q σ , δ f 1 ( w ) λ w W α , β , p , q σ , δ f 1 ( w ) + ( 1 λ ) W α , β , p , q σ , δ f 1 ( w ) = 1 + e 1 l 1 w + e 1 l 2 + e 2 l 1 2 w 2 + .
If for z , w D , it is already known that ε ( z )   <   1 and ζ ( w )   <   1 , then
d j   < = 1 , l j   < = 1 , j N ,
please see [66] for more details.
In the relations (11) and (12), after simplifying, we find that
( λ + 1 ) [ Ψ 2 ( σ , α , β ) ] p , q δ [ Ψ 1 ( σ , α , β ) ] p , q δ a 2 = e 1 d 1 ,
2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ [ Ψ 1 ( σ , α , β ) ] p , q δ a 3 λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ [ Ψ 1 ( σ , α , β ) ] p , q 2 δ a 2 2 = e 1 d 2 + e 2 d 1 2 ,
( λ + 1 ) [ Ψ 2 ( σ , α , β ) ] p , q δ [ Ψ 1 ( σ , α , β ) ] p , q δ a 2 = e 1 l 1
and
2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ [ Ψ 1 ( σ , α , β ) ] p , q δ 2 a 2 2 a 3 λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ [ Ψ 1 ( σ , α , β ) ] p , q 2 δ a 2 2 = e 1 l 2 + e 2 l 1 2 .
The Inequality (5) follows from (14) and (16). In view of (14) and (15), we conclude that
2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 a 3 = d 2 + e 2 e 1 + λ γ ( λ 1 ) + 3 λ + 1 e 1 λ + 1 2 d 1 2 ,
and on the basis of the well-known sharp result please see [67], (p. 10):
| d 2 μ d 1 2 | < = max 1 , | μ |
for all μ C , we obtain
2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 | a 3 | < = max 1 , e 2 e 1 + λ γ ( λ 1 ) + 3 λ + 1 e 1 λ + 1 2 .
Following (16) and (17), we deduce that
2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 a 3 = l 2 + e 2 e 1 4 ( 2 λ + 1 ) [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 3 ( σ , α , β ) ] p , q δ λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ e 1 λ + 1 2 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ l 1 2 .
Applying (19), we obtain
2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 | a 3 | < = max 1 , e 2 e 1 4 ( 2 λ + 1 ) [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 3 ( σ , α , β ) ] p , q δ λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ e 1 λ + 1 2 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ .
Inequality (23) follows from (20) and (22). □
From Relation (3), we have e 1 = M ( x ) and e 2 = M 2 ( x ) + 2 N ( x ) and if we consider the generating function (4) of the ( M , N ) -Lucas polynomials, L M , N , k ( x ) as h ( z ) + 1 , Theorem 1 provides the following corollary.
Corollary 1.
If f Σ of the form (1) is in the class W Σ ( λ , γ , σ , δ , α , β , p , q ; T M ( x ) , N ( x ) 1 ) , then
a 2 < = | M ( x ) | [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 2 ( σ , α , β ) ] p , q δ λ + 1
and
a 3 < = min max [ Ψ 1 ( σ , α , β ) ] p , q δ M ( x ) 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ , [ Ψ 1 ( σ , α , β ) ] p , q δ M 2 ( x ) + 2 N ( x ) 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ + λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 1 ( σ , α , β ) ] p , q δ M 2 ( x ) 2 ( 2 λ + 1 ) λ + 1 2 [ Ψ 3 ( σ , α , β ) ] p , q δ , max [ Ψ 1 ( σ , α , β ) ] p , q δ M ( x ) 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ , [ Ψ 1 ( σ , α , β ) ] p , q δ M 2 ( x ) + 2 N ( x ) 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ 4 ( 2 λ + 1 ) [ Ψ 1 ( σ , α , β ) ] p , q 2 δ [ Ψ 3 ( σ , α , β ) ] p , q δ λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 2 ( σ , α , β ) ] p , q 2 δ M 2 ( x ) 2 ( 2 λ + 1 ) λ + 1 2 [ Ψ 3 ( σ , α , β ) ] p , q δ [ Ψ 2 ( σ , α , β ) ] p , q 2 δ ,
for all λ , γ , σ , δ , α , β , p , q , x such that σ N , γ > = 0 , α R , 0 < = λ < = 1 , α + β > 0 , β R 0 + , δ N 0 , 0 < q < p < = 1 and x R , where T M ( x ) , N ( x ) is given by (4).
For the family functions W Σ ( λ , γ , σ , δ , α , β , p , q ; h ) , we prove the Fekete–Szegö inequality in the next theorem.
Theorem 2.
If f Σ of the form (1) is in the class W Σ ( λ , γ , σ , δ , α , β , p , q ; h ) , then
a 3 η a 2 2 < = | [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 | 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ × × min max 1 , e 2 e 1 + λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ + 2 η ( 2 λ + 1 ) [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 3 ( σ , α , β ) ] p , q δ e 1 λ + 1 2 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ , max 1 , e 2 e 1 + λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ + 2 ( η 2 ) ( 2 λ + 1 ) [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 3 ( σ , α , β ) ] p , q δ e 1 λ + 1 2 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ
for all λ , γ , σ , δ , α , β , p , q such that α R , γ > = 0 , β R 0 + , 0 < = λ < = 1 , σ N , δ N 0 , α + β > 0 , 0 < q < p < = 1 , η C .
Proof. 
We apply the notations from the proof of Theorem 1. From (14), (15) and (18), we have
a 3 η a 2 2 = [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ × × r 2 + e 2 e 1 + λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ + 2 η ( 2 λ + 1 ) [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 3 ( σ , α , β ) ] p , q δ e 1 λ + 1 2 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ r 1 2
and using the known sharp result | r 2 μ r 1 2 | < = max 1 , | μ | , we obtain
| a 3 η a 2 2 | < = | [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 | 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ × × max 1 , e 2 e 1 + λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ + 2 η ( 2 λ + 1 ) [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 3 ( σ , α , β ) ] p , q δ e 1 λ + 1 2 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ .
In the same way, from (16), (17) and (21), we conclude that
a 3 η a 2 2 = [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ s 2 + e 2 e 1 + λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ + 2 ( η 2 ) ( 2 λ + 1 ) [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 3 ( σ , α , β ) ] p , q δ e 1 λ + 1 2 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ s 1 2
and using | s 2 μ s 1 2 | max 1 , | μ | , we obtain
| a 3 η a 2 2 | < = | [ Ψ 1 ( σ , α , β ) ] p , q δ e 1 | 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ max 1 , e 2 e 1 + λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ + 2 ( η 2 ) ( 2 λ + 1 ) [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 3 ( σ , α , β ) ] p , q δ e 1 λ + 1 2 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ .
Inequality (29) follows from (26) and (28). □
Corollary 2.
If f Σ of the form (1) is in the class W Σ ( λ , γ , σ , δ , α , β , p , q ; T M ( x ) , N ( x ) 1 ) , then
a 3 η a 2 2 < = | [ Ψ 1 ( σ , α , β ) ] p , q δ M ( x ) | 2 ( 2 λ + 1 ) [ Ψ 3 ( σ , α , β ) ] p , q δ min max 1 , M 2 ( x ) + 2 N ( x ) M ( x ) + λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ + 2 η ( 2 λ + 1 ) [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 3 ( σ , α , β ) ] p , q δ M ( x ) λ + 1 2 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ , max 1 , M 2 ( x ) + 2 N ( x ) M ( x ) + λ γ ( λ 1 ) + 3 λ + 1 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ + 2 ( η 2 ) ( 2 λ + 1 ) [ Ψ 1 ( σ , α , β ) ] p , q δ [ Ψ 3 ( σ , α , β ) ] p , q δ M ( x ) λ + 1 2 [ Ψ 2 ( σ , α , β ) ] p , q 2 δ ,
for all λ , γ , σ , δ , α , β , p , q , x such that α R , γ > = 0 , 0 < = λ < = 1 , β R 0 + , α + β > 0 , σ N , δ N 0 , 0 < q < p < = 1 and x R , where T M ( x ) , N ( x ) is given by (4).

3. Conclusions

We obtain in this paper a new family W Σ ( λ , γ , σ , δ , α , β , p , q ; h ) of holomorphic and bi-univalent functions defined by a certain operator and also using the ( M , N ) -Lucas Polynomials L M , N , k ( x ) , which are of the form (3) and generate the function T M ( x ) , N ( x ) ( z ) in (4). We generate Taylor–Maclaurin coefficient inequalities for functions belonging to the family W Σ ( λ , γ , σ , δ , α , β , p , q ; h ) and consider the famous Fekete–Szegö problem.

Author Contributions

Conceptualization, A.K.W. and L.-I.C.; methodology, A.K.W. and L.-I.C.; software, A.K.W. and L.-I.C.; validation, A.K.W. and L.-I.C.; formal analysis, A.K.W. and L.-I.C.; investigation, A.K.W. and L.-I.C.; resources, L.-I.C.; data curation, A.K.W. and L.-I.C.; writing—original draft preparation, A.K.W. and L.-I.C.; writing—review and editing, A.K.W. and L.-I.C.; visualization, A.K.W. and L.-I.C.; supervision, A.K.W. and L.-I.C.; project administration, A.K.W. and L.-I.C.; funding acquisition, L.-I.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 2, 85–89. [Google Scholar] [CrossRef]
  2. Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef] [Green Version]
  3. Al-Amoush, A.G. Coefficient estimates for a new subclasses of λ-pseudo biunivalent functions with respect to symmetrical points associated with the Horadam Polynomials. Turk. J. Math. 2019, 43, 2865–2875. [Google Scholar] [CrossRef]
  4. Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 2017, 8, 32–39. [Google Scholar]
  5. Cotîrlă, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
  6. Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
  7. Güney, H.Ö.; Murugusundaramoorthy, G.; Sokół, J. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapient. Math. 2018, 10, 70–84. [Google Scholar] [CrossRef] [Green Version]
  8. Srivastava, H.M.; Altınkaya, Ş.; Yalçin, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 1873–1879. [Google Scholar] [CrossRef]
  9. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
  10. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
  11. Srivastava, H.M.; Wanas, A.K.; Güney, H.Ö. New families of bi-univalent functions associated with the Bazilevič functions and the λ-Pseudo-starlike functions. Iran. J. Sci. Technol. Trans. A Sci. 2021, 45, 1799–1804. [Google Scholar] [CrossRef]
  12. Srivastava, H.M.; Wanas, A.K.; Murugusundaramoorthy, G. Certain family of bi-univalent functions associated with Pascal distribution series based on Horadam polynomials. Surv. Math. Its Appl. 2021, 16, 193–205. [Google Scholar]
  13. Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
  14. Wanas, A.K. Horadam polynomials for a new family of λ-pseudo bi-univalent functions associated with Sakaguchi type functions. Afr. Mat. 2021, 32, 879–889. [Google Scholar] [CrossRef]
  15. Oros, G.I.; Cotîrlă, L.I. Coefficient estimates and the Fekete–Szegö problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
  16. Breaz, D.; Cotîrlă, L.I. The study of the new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 75. [Google Scholar] [CrossRef]
  17. Abirami, C.; Magesh, N.; Yamini, J. Initial bounds for certain classes of bi-univalent functions defined by Horadam Polynomials. Abstr. Appl. Anal. 2020. [Google Scholar] [CrossRef] [Green Version]
  18. Altınkaya, X.; Yalçin, S. Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. arXiv 2017, arXiv:1605.08224v2. [Google Scholar]
  19. Amourah, A. Fekete-Szegö inequalities for analytic and bi-univalent functions subordinate to (p,q)-Lucas Polynomials. arXiv 2020, arXiv:2004.00409. [Google Scholar]
  20. Amourah, A.; Frasin, B.A.; Abdeljaward, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar] [CrossRef]
  21. Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 1988, 31, 53–60. [Google Scholar]
  22. Bulut, S. Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions. Filomat 2016, 30, 1567–1575. [Google Scholar] [CrossRef]
  23. Çağlar, M.; Aslan, S. Fekete-Szegö inequalities for subclasses of bi-univalent functions satisfying subordinate conditions. In AIP Conference Proceedings; AIP Conference Publishing: New York, NY, USA, 2016; Volume 1726, p. 020078. [Google Scholar] [CrossRef]
  24. Cataş, A. A note on subclasses of univalent functions defined by a generalized Sălăgean operator. Acta Univ. Apulensis 2006, 12, 73–78. [Google Scholar]
  25. Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szego inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. arXiv 2018, arXiv:1801.09531. [Google Scholar] [CrossRef]
  26. Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389. [Google Scholar] [CrossRef] [Green Version]
  27. Li, X.-F.; Wang, A.P. Two new subclasses of bi-univalent functions. Int. Math. Forum 2012, 7, 1495–1504. [Google Scholar]
  28. Magesh, N.; Yamini, J. Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions. Tbil. Math. J. 2018, 11, 141–157. [Google Scholar] [CrossRef] [Green Version]
  29. Páll-Szabó, A.O.; Oros, G.I. Coefficient Related Studies for New Classes of Bi-Univalent Functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
  30. Raina, R.K.; Sokol, J. Fekete-Szegö problem for some starlike functions related to shell-like curves. Math. Slovaca 2016, 66, 135–140. [Google Scholar] [CrossRef]
  31. Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions, Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Mat. (RACSAM) 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
  32. Wanas, A.K. Applications of (M,N)-Lucas polynomials for holomorphic and bi-univalent functions. Filomat 2020, 34, 3361–3368. [Google Scholar] [CrossRef]
  33. Wanas, A.K.; Lupas, A.A. Applications of Horadam Polynomials on Bazilevic Bi- Univalent Function Satisfying Subordinate Conditions. IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1294, 032003. [Google Scholar] [CrossRef]
  34. Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
  35. Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
  36. Jagannathan, R.; Rao, K.S. Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. arXiv 2006, arXiv:math/0602613. [Google Scholar]
  37. Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
  38. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
  39. Victor, K.; Pokman, C. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
  40. Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. arXiv 2018, arXiv:1309.3934. [Google Scholar]
  41. Corcino, R.B. On p,q-binomial coefficients. Integers 2008, 8, A29. [Google Scholar]
  42. Wanas, A.K.; Cotîrlă, L.I. Initial coefficient estimates and Fekete–Szegö inequalities for new families of bi-univalent functions governed by (pq)-Wanas operator. Symmetry 2021, 13, 2118. [Google Scholar] [CrossRef]
  43. Shah, S.A.; Noor, K.I. Study on the q-analogue of a certain family of linear operators. Turk. J. Math. 2019, 43, 2707–2714. [Google Scholar] [CrossRef]
  44. Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]
  45. Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
  46. Wanas, A.K. New differential operator for holomorphic functions. Earthline J. Math. Sci. 2019, 2, 527–537. [Google Scholar] [CrossRef]
  47. Swamy, S.R. Inclusion properties of certain subclasses of analytic functions. Int. Math. Forum 2012, 7, 1751–1760. [Google Scholar]
  48. Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. Integral Transform. Spec. Funct. 2007, 18, 207–216. [Google Scholar] [CrossRef]
  49. Cho, N.E.; Srivastava, H.M. Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Model. 2003, 37, 39–49. [Google Scholar] [CrossRef]
  50. Uralegaddi, B.A.; Somanatha, C. Certain classes of univalent functions. In Current Topics in Analytic Function Theory; Srivastava, H.M., Own, S., Eds.; World Scientific: Singapore, 1992; pp. 371–374. [Google Scholar]
  51. Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef] [Green Version]
  52. Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
  53. Alexander, J.W. Functions which map the interior of the unit circle upon simple region. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
  54. Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
  55. Sălxaxgean, G.S. Subclasses of Univalent Functions; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1983; Volume 1013, pp. 362–372. [Google Scholar]
  56. Lee, G.Y.; Aşcı, M. Some properties of the (p,q)-Fibonacci and (p,q)-Lucas polynomials. J. Appl. Math. 2012, 2012, 1–18. [Google Scholar] [CrossRef] [Green Version]
  57. Filipponi, P.; Horadam, A.F. Derivative sequences of Fibonacci and Lucas polynomials. Appl. Fibonacci Numbers 1991, 4, 99–108. [Google Scholar]
  58. Lupas, A. A guide of Fibonacci and Lucas polynomials. Octag. Math. Mag. 1999, 7, 2–12. [Google Scholar]
  59. Wang, T.; Zhang, W. Some identities involving Fibonacci, Lucas polynomials and their applications. Bull. Math. Soc. Sci. Math. Roum. 2012, 55, 95–103. [Google Scholar]
  60. Akgül, A. (P,Q)-Lucas polynomial coefficient inequalities of the bi-univalent function class. Turk. J. Math. 2019, 43, 2170–2176. [Google Scholar] [CrossRef]
  61. Altinkaya, S. Inclusion properties of Lucas polynomials for bi-univalent functions introduced through the q-analogue of the Noor integral operator. Turk. J. Math. 2019, 43, 620–629. [Google Scholar] [CrossRef]
  62. Altinkaya, S.; Yalçin, S. On the (p,q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ. Boletín Soc. Mat. Mex. 2019, 25, 567–575. [Google Scholar] [CrossRef]
  63. Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazilevič functions of order ϑ + iδ associated with (p,q)-Lucas polynomials. AIMS Math. 2021, 6, 4296–4305. [Google Scholar] [CrossRef]
  64. Orhan, H.; Arikan, H. (P,Q)-Lucas polynomial coefficient inequalities of bi-univalent functions defined by the combination of both operators of Al-Aboudi and Ruscheweyh. Afr. Mat. 2021, 32, 589–598. [Google Scholar] [CrossRef]
  65. Swamy, S.R.; Wanas, A.K.; Sailaja, Y. Some special families of holomorphic and Sălăgean type bi-univalent functions associated with (m,n)-Lucas polynomials. Commun. Math. Appl. 2020, 11, 563–574. [Google Scholar]
  66. Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
  67. Keogh, F.R.; Merkes, Ė.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Wanas, A.K.; Cotîrlă, L.-I. Applications of (M,N)-Lucas Polynomials on a Certain Family of Bi-Univalent Functions. Mathematics 2022, 10, 595. https://0-doi-org.brum.beds.ac.uk/10.3390/math10040595

AMA Style

Wanas AK, Cotîrlă L-I. Applications of (M,N)-Lucas Polynomials on a Certain Family of Bi-Univalent Functions. Mathematics. 2022; 10(4):595. https://0-doi-org.brum.beds.ac.uk/10.3390/math10040595

Chicago/Turabian Style

Wanas, Abbas Kareem, and Luminiţa-Ioana Cotîrlă. 2022. "Applications of (M,N)-Lucas Polynomials on a Certain Family of Bi-Univalent Functions" Mathematics 10, no. 4: 595. https://0-doi-org.brum.beds.ac.uk/10.3390/math10040595

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop